(Ligand)Übergangsmetall-π-Komplexe organosubstituierter 2,5-Dihydro-1,2,5-azasilaborole – Herstellung und Charakterisierung in Lösung¹⁾

Roland Köster**, Günter Seidel*, Bernd Wrackmeyer*b und Dieter Schlosser^c

Max-Planck-Institut für Kohlenforschung^a, Kaiser-Wilhelm-Platz 1, D-4330 Mülheim an der Ruhr

Laboratorium für Anorganische Chemie der Universität Bayreuth^b, Universitätsstraße 30, D-8580 Bayreuth

Chemische Fabrik Pfersee^c, Postfach 101409, D-8900 Augsburg

Eingegangen am 24. April 1989

Key Words: Transition metal η^4 -organoboranes / endo/exo- η^4 -Complexation

Aus den Heterocyclen $R^{1}NSiR_{2}^{2}-CR^{3}=CR^{4}BR^{5}4$, 5 und 7 sowie 5a-n⁶-Cr(CO)₃ werden durch thermische oder photochemische Umsetzung mit geeigneten Organometall-Verbindungen folgende η^4 -Komplexe erhalten: (OC)₄M-4a (M = Cr, Mo), (OC)₃Fe-4f, j, die exo/endo-Komplexe (OC)₃Fe-4c, -7c, d, CpCo-4h, j, CpCo-5a- η^6 -Cr(CO)₃, endo/exo-CpCo-7c, exo-CpCo-7d, (OC)₃Ru-4a, (acac)Rh-4a, [ClRh-4a]₂ und (C₂H₄)ClIr-4a. Die cyclodiastereotopen Heterocyclen 4c, 7c und 7d komplexieren am Ligand-Ubergangsmetall diastereoselektiv. Aus NaNSi(CH₃)₂C(CH₃) = $C(C_2H_5)BC_2H_5$ (Na-3a) und $[(C_2H_4)_2RhCl]_2$ erhält man $[(C_2H_4)Rh \eta^{1}\eta^{4}$ -3a]₂. Die Vinyl-Verbindungen 4b und 5b führen zu η^{4} -Komplexen unter Anbindung der Metall-Atome an die endo-C=C-B = N- und/oder exo-C = C - C = C-Gruppierung. Sämtliche π -Komplexe sind massenspektrometrisch und mittels Multikern-NMR-Spektroskopia (¹H, ¹¹B, ¹³C, ^{14,15}N, ¹⁷O, ²⁹Si, ⁵⁹Co, ¹⁰³Rh) charakterisiert. Ihre Bindungsverhältnisse werden aufgrund der NMR-Daten diskutiert.

Herstellung der Übergangsmetall-π-Komplexe

Die π -Komplexe der C₂SiNB-Ringverbindungen 4, 5 und 7 mit verschiedenen neutralen (Ligand)Ubergangsmetall-Fragmenten gewannen wir ausschließlich nach bekannten Methoden², meist thermisch unter Verdrängung eines Neutralliganden durch den C₂SiNB-Heterocyclus, der mit der C=C-B=N-Atomgruppierung an das jeweilige Übergangsmetall n⁴-gebunden wird. Einige Komplexverbindungen haben wir aus Ligand und Übergangsmetall-Verbindung auch photochemisch hergestellt. Aus cyclodiastereotopen Heterocyclen wie z. B. 4c erhält man Isomerengemische cyclodiastereomerer n⁴-Komplexe.

Als Übergangsmetall-Verbindungen dienten z. B. $(CH_3-CN)_3Cr(CO)_3$, $(CH_3CN)_3Mo(CO)_3$, Fe $(CO)_5$, Fe $_2(CO)_9$ und Ru $_3(CO)_{12}$ in THF oder in Mesitylen. Acetonitril und Alkene lassen sich thermisch durch die Verbindungen des Typs 4, 5 und 7 leicht verdrängen. Kohlenmonoxid kann auch photochemisch abgespalten werden.

Über die Herstellung^{1,3-5)} von 2,5-Dihydro-1*H*-1,2,5-azasilaborolen mit Organo-Resten in 1-⁵⁾ sowie in $2-5^{1,4)}$ -Stellung haben wir berichtet. Diese einfach ungesättigten He-

(Ligand)Transition Metal π -Complexes of Organosubstituted 2,5-Dihydro-1,2,5-azasilaboroles – Preparation and Characterization in Solution¹⁾

The heterocycles $R^1NSiR_2^2 - CR^3 = CR^4BR^5$ 4, 5, 7, and $5a \cdot \eta^6 - Cr(CO)_3$ react thermally or photochemically with suitable organometallic compounds to form the η^4 -complexes $(OC)_4M$ -4a (M = Cr, Mo), $(OC)_3Fe$ -4f, j, the *exo/endo* compounds $(OC)_3Fe$ -4c, 7c, d, CpCo-4h, j, CpCo-5a \cdot \eta^6 - Cr(CO)_3, *endo/exo*-CpCo-7c, *exo*-CpCo-7d, $(OC)_3Ru$ -4a, (acac)Rh-4a, [ClRh-4a]_2, and $(C_2H_4)CIIr$ -4a. The cyclodiastereotopic heterocycles 4c, 7c, and 7d are complexed diastereoselectively at the ligand transition <u>metal fragments</u>. [$(C_2H_4)Rh$ - $\eta^1\eta^4$ -3a]_2 is obtained from NaNSi(CH_3)_2C(CH_3) = C(C_2H_5)BC_2H_5 (Na-3a) and [$(C_2H_4)_2RhCI]_2$. Reaction of the vinyl compounds 4b and 5b leads to η^4 -complexation at the *endo*-C=C-B=N and/or the *exo*-C=C-C=C grouping. All π -complexes are characterized by mass spectrometry and multinuclear NMR spectroscopy (¹H, ¹¹B, ¹³C, ^{14.15}N, ¹⁷O, ²⁹Si, ⁵⁹Co, ¹⁰³Rh). Their bondings are discussed on the basis of their NMR data.

terocyclen eignen sich zur π -Komplexierung von (Ligand)-Übergangsmetall-Fragmenten⁶⁾. Hierüber berichteten wir bisher nur auszugsweise⁷⁾ und vorläufig^{2,8)}. Die cycloenantiotopen^{9,10)} C₂SiNB-Ringe mit zwei unterschiedlichen Substituenten am Si-Atom sind cyclodiastereotop. Aus diesem Grund interessieren wir uns besonders für die π -Komplexierung dieser Ringverbindungen sowie für die Selektivität ihrer Anbindung. Auch Vergleiche zwischen den π -Komplexen der einfach ungesättigten C₂SiNB-Ringe mit denen der einfach ungesättigten C₂SiElB-Ringe (El = O¹¹⁾, S¹²⁾, Se¹³⁾, PC₆H₅^{14,15)} sind von Interesse. Wir berichten hier über π -Komplexe der Verbindungen **4a**, **b**, **c**, **e**, **f**, **h**, **i**, **j**, **5a**, **b** und **7c**, **d** an die Fragmente (OC)₄Cr, (OC)₄Mo, (OC)₃Fe, C₅H₅Co, (OC)₃Ru, C₅H₅Rh, C₅H₇O₂Rh und (C₂H₄)ClIr sowie an das Nickel-Atom.

Komplexverbindungen der 3-Methyl-, 3-Ethyl- und 3-Phenyl-C₂SiNB-Heterocyclen

Erwärmt man die orangerote Suspension von $(CH_3CN)_3$ -Cr(CO)₃ in Dioxan mit überschüssigem **4a** auf 60–70°C, so bildet sich ein gelbbraunes Gemisch, aus dem nach Abtrennen von einem braunschwarzen Niederschlag das orangegelbe, wachsartige $(OC)_4Cr-\eta^4$ -**4a** mit 52% Ausbeute isoliert werden kann, Gl. (a). Analog reagiert $(CH_3CN)_3Mo (CO)_3$ mit **4a** zum orangegelben, äußerst temperaturempfindlichen $(OC)_4Mo-\eta^4$ -**4a** mit 34% Ausbeute. Beide Verbindungen sind massenspektrometrisch (vgl. Tab. 1), ¹H-(Tab. 3) und ¹³C- sowie Heteroatom-NMR-spektroskopisch (Tab. 5) identifiziert worden.

Wie die η^4 -Komplexierung des $(OC)_3$ Fe-Fragments an $4a^{7}$ gelingt auch die η^4 -Anknüpfung von $(OC)_3$ Fe an die 1-Phenylverbindung **5a** glatt. Läßt man Fe₂(CO)₉ in Mesitylen oberhalb 120°C auf **5a** einwirken, so spaltet sich CO ab, und unter Abscheiden von wenig elementarem Eisen erhält man nach Gl. (b) mit 35% Ausbeute einheitliches, kristallisiertes, dunkelrotes $(OC)_3$ Fe- η^4 -**5a**.

4c reagiert mit $Fe(CO)_5$ in THF-Lösung beim Belichten unter CO-Abspaltung nach Gl. (c) zu einem roten, in fester Form isolierbaren Isomerengemisch mit ca. 1/3 (OC)₃Fe- η^4 -**4c** (*endo*-Et²) und ca. 2/3 (OC)₃Fe- η^4 -**4c** (*exo*-Et²).

Zur photochemischen oder thermischen π -Komplexierung des (OC)₃Fe-Fragments an die NH-Verbindung 7c kann man von verschiedenen Carbonyleisen-Verbindungen wie Fe(CO)₅ oder Fe₂(CO)₉ ausgehen. Belichtet man das Gemisch aus 7c und Fe(CO)₅ in THF bei Raumtemperatur, so bildet sich unter CO-Abspaltung nach Gl. (d) eine dunkelrote Lösung der *exo/endo*-isomeren (OC)₃Fe- η^4 -7c-Verbindungen. Gaschromatographisch trennbar sind 62% (OC)₃Fe- η^4 -*exo*-7c und 38% (OC)₃Fe- η^4 -*endo*-7c, deren Zuordnung NMR-spektroskopisch leicht möglich ist. Thermisch erhält man aus 7c und Fe₂(CO)₉ in Mesitylen bei 150-160°C nach Gl. (d) ein *exo/endo*-(OC)₃Fe- η^4 -7c-Gemisch ähnlicher Zusammensetzung.

Aus der NH-Verbindung **7d** mit 2-Phenylgruppe bildet sich photochemisch bei Raumtemperatur mit Fe(CO)₅ in THF ein nahezu äquimolares Gemisch von *exo/endo*-(OC)₃-Fe- η^4 -**7d**, Gl. (e). Das durch Kristallisation gewonnene Produkt besteht aus ca. 92% *exo*- und ca. 8% *endo*-2-Phenyl-Isomer. Aus der Mutterlauge läßt sich ein 1:9-Gemisch der *exo/endo*-Isomeren isolieren, die beim Erhitzen in Mesitylen auf 150°C in 5 h ein 3:7*-exo/endo*-Gemisch liefern. Einheitliches *exo*-(OC)₃Fe- η^4 -**7d** kann mit hoher Ausbeute (91%) aus Fe₂(CO)₉ und **7d** in Mesitylen nach 10 h bei 150°C hergestellt werden.

Die durch Gl. (f) beschriebenen η^4 -Komplexierungen am Tricarbonyleisen-Fragment verlaufen vollkommen einheitlich. Die 3-Ethyl-Verbindung **4e** reagiert photochemisch unter CO-Abspaltung mit $Fe(CO)_5$ zu einer rotbraunen Lösung, aus der mit 75% Ausbeute rotbraunes festes $(OC)_3Fe-\eta^4$ -4e isoliert werden kann. Analog erhält man $(OC)_3Fe-\eta^4$ -4f und -4j.

Wie bei der bereits früher beschriebenen η^4 -Komplexierung des C₅H₅Co-Fragments an 4a zu C₅H₅Co- η^4 -4a⁷ läßt sich C₅H₅Co(C₂H₄)₂ auch an die NH-Verbindung 7c und an die 1-Phenyl-Verbindung 5a η^4 -binden. Das bereits mit (OC)₃Cr η^6 -komplexierte 5a reagiert ebenfalls mit C₅H₅Co(C₂H₄)₂ unter η^4 -Komplexierung am C₂SiNB-Cyclus. Man erhält nach Gl. (g) aus (OC)₃Cr- η^6 -5a (Röntgenstrukturanalyse vgl. Lit.⁶) mit C₃H₅Co(C₂H₄)₂ in Heptan bei ca. 60 °C unter Freisetzen von Ethen mit 67% Ausbeute das dunkelgrüne, kristallisierte C₃H₅Co- η^4 -5a- η^6 -Cr(CO)₃. Au-Ber den MS- und NMR-Daten liegt von der Chrom/Cobalt-Verbindung eine Röntgenstrukturanalyse⁶ vor.

Die NH-Verbindung 7c mit 2-Ethylgruppe am Silicium-Atom reagiert mit $C_5H_5Co(C_2H_4)_2$ in Toluol bei $60-80^{\circ}C$ nach Gl. (g) unter Ethen-Abspaltung zu einem viskos-flüssigen Gemisch von zwei isomeren $C_5H_5Co-\eta^4$ -7c-Verbindungen. Das gaschromatographisch bestimmte 7:3-Verhältnis der *exo/endo*-2-Ethyl-Isomeren läßt sich NMR-spektroskopisch (vgl. Tab. 3, 5) zuordnen. Die π -Komplexierung von 7d (2-Phenylgruppe) am C_5H_5Co -Fragment verläuft demgegenüber praktisch einheitlich zum festen *exo*-2-Phenyl-Isomer $C_5H_5Co-\eta^4$ -7d, von dem eine Röntgenstrukturanalyse⁶⁾ angefertigt wurde.

Auch die 5-Ethoxy-Verbindung **4h** kann man glatt an das C_5H_5Co -Fragment von $C_5H_5Co(C_2H_4)_2$ nach Gl. (g) η^4 -komplexieren. Mit 80% Ausbeute bildet sich in Toluol bei

2057

50-60 °C das hochviskose, dunkelgrüne, extrem luftempfindliche C₃H₃Co-η⁴-**4h**. MS- und NMR-Daten (vgl. Tab. 1, 3 und 5) bestätigen die Struktur der Verbindung. Analog erhält man aus **4j** und C₃H₃Co(C₂H₄)₂ in Toluol bei 50-80 °C mit 84% Ausbeute die Komplexverbindung C₃H₃Co-η⁴-**4j**.

Die η^4 -Komplexierung des (OC)₃Ru-Fragments am Vierelektronenliganden **4a** erfolgt entsprechend Gl. (c) analog zur (OC)₃Fe-Komplexierung. Aus **4a** und Ru₃(CO)₁₂ erhält man in Mesitylen bei 150–160 °C nach CO-Abspaltung mit ca. 60% Ausbeute gelbes, kristallines (OC)₃Ru- η^4 -**4a**.

Die η^4 -Komplexierung des 14e-C₅H₅Rh-Fragments am Vierelektronen- π -Liganden 4a führt nach Gl. (h₁) mit ca. 80% Ausbeute zum dunkelroten, wachsartigen 18e-C₅H₅Rh- η^4 -4a, analog aufgebaut wie die Verbindung C₅H₅Co- η^4 -4a.

 $C_5H_7O_2 = Acetylacetonat$

Auch die Verdrängung von Ethen aus $[ClRh(C_2H_4)_2]_2$ gelingt mit **4a**. Nach Gl. (h₂) erhält man das orangerote, kristallisierte (ClRh- η^4 -**4a**)₂ mit ca. 80% Ausbeute. Die monomere Rhodium(I)-Verbindung C₅H₇O₂Rh- η^4 -**4a** (Ausb. 90%) läßt sich als 16e-Komplex aus C₅H₇O₂Rh(C₂H₄)₂ und **4a** ebenfalls unter Verdrängung von Ethen nach Gl. (h₃) leicht herstellen.

Läßt man dimeres Bis(ethen)rhodium(I)-chlorid mit der 1-Natrio-Verbindung Na-**3a** in Toluol bei 50 °C reagieren, so bildet sich unter Freisetzen von Ethen und Abscheiden von NaCl nach Gl. (i) eine dunkelrote Lösung, aus der kristallines, dunkelrotes $(C_2H_4Rh-\eta^1\eta^4-3a)_2$ mit etwa 30% Ausbeute isoliert werden kann. Von der Verbindung liegt eine Röntgenstrukturanalyse⁶⁾ vor. Außerdem isoliert man aus der Mutterlauge noch eine dunkelbraune, ebenfalls kristallisierte isomere Verbindung. Die ¹H-NMR-Spektren (vgl. Tab. 3) der beiden Isomeren unterscheiden sich deutlich. Die Struktur des braunen Isomer ist unbekannt, könnte aber analog dem QT-Isomer der beschriebenen Rhodium-Verbindung $[Rh(\eta-tBu_2P)(CO)_2]_2^{16}$ aufgebaut sein.

Beim Erhitzen eines Gemischs aus 1 mol $[(C_2H_4)_2IrCl]_2$ und 2.5 mol 4a in Toluol auf 60 – 100 °C wird 1 mol Ethen abgespalten (Gl. j). Man erhält dunkelrotes, kristallines, monomeres $C_2H_4(Cl)Ir-\eta^4$ -4a mit 42% Ausbeute.

Komplexverbindungen der 3-Isopropenyl-C₂SiNB-Verbindung 4b

2.5 mol 4b reagieren mit 1 mol $Fe_2(CO)_9$ in Mesitylen bei 140–160°C unter Abspaltung von 3 mol Kohlenmonoxid. Mit 67% Ausbeute erhält man nach den Gl. $(k_1)-(k_3)$ ein

orangerotes Gemisch der drei Isomeren endo- $(OC)_3Fe-\eta^4$ - **4b**, exo- $(OC)_3Fe-\eta^4$ -**4b'** und exo- $(OC)_3Fe-\eta^4$ -**4b''**, die im HPLC-bestimmten Mengenverhältnis 20:74:6 vorliegen. Reines, HPLC-abgetrenntes, gelbes exo- $(OC)_3Fe-\eta^4$ -**4b'** ist im Tageslicht nicht beständig und wandelt sich langsam in ein Gemisch mit ca. 70% endo- $(OC)_3Fe-\eta^4$ -**4b** um.

Aus der braungelben Lösung äquimolarer Mengen **4b** und (OC)₃Fe(η^4 -C₄H₆) in Mesitylen erhält man bei 60 °C eine dunkelrote Lösung, die 17% (OC)₃Fe- η^4 -**4b**, 66% (OC)₃Fe- η^4 -**4b'** und 17% (OC)₃Fe- η^4 -**4b''** enthält. Belichtet man diese THF-Lösung, so wird ein Gemisch aus 72% (OC)₃Fe- η^4 -**4b**, 17% (OC)₃Fe- η^4 -**4b'** und 11% (OC)₃Fe- η^4 -**4b''** gebildet.

Das nach den Gl. $(k_1)-(k_3)$ aus **4b** und Fe(CO)₅ in THF durch Belichten hergestellte Gemisch aus 73% (OC)₃Fe- η^4 -**4b**, 23% (OC)₃Fe- η^4 -**4b'** und 4% (OC)₃Fe- η^4 -**4b''** wird in Mesitylen beim Erhitzen auf 160°C in ein Gemisch aus 23% (OC)₃Fe- η^4 -**4b**, 63% (OC)₃Fe- η^4 -**4b'** und 14% (OC)₃Fe- η^4 -**4b''** umgewandelt.

Chem. Ber. 122 (1989) 2055-2073

Zwischen der stabileren gelben *exo*-Verbindung (OC)₃Fe- η^4 -**4b'** und der beim Belichten angereicherten roten *endo*-Verbindung (OC)₃Fe- η^4 -**4b** liegt ein thermisch bzw. photochemisch einstellbares Gleichgewicht vor. Das zweite durch 1,5-H-Wanderung gebildete *exo*-Isomer (OC)₃Fe- η^4 -**4b''** ist in den Gemischen stets nur mit geringem Anteil vorhanden.

Beim Erhitzen von **5b** mit Fe₂(CO)₉ in Mesitylen auf 160°C erhält man nach den Gl. (l) unter η^4 -Komplexierung des (OC)₃Fe-Fragments ausschließlich an der exocyclischen -C=C-C=C-Gruppierung mit 50% Ausbeute ein gelbbraunes, viskoses Produktgemisch aus 95% (OC)₃Fe- η^4 -**5b'** und ca. 5% (OC)₃Fe- η^4 -**5b'**.

Nach Erhitzen einer Mesitylen-Lösung von $Ru_3(CO)_{12}$ mit überschüssigem **4b** auf ca. 160 °C isoliert man entsprechend den Gl. (m) mit 74% Ausbeute gelbes, wachsartiges Gemisch aus 84% *exo-*(OC)₃Ru- η^4 -**4b'**, 3% *exo-*(OC)₃Ru- η^4 -**4b''** und 13% *endo-*(OC)₃Ru- η^4 -**4b**. Bei 7stündigem Belichten der gelben THF-Lösung bildet sich nach den Gl. (m) eine orangefarbene Lösung aus 69% (OC)₃Ru- η^4 -**4b**, 23% (OC)₃Ru- η^4 -**4b''**. Läßt man bei 20-40°C 1 mol $C_5H_5Co(C_2H_4)_2$ und 2.5 mol **4b** 1 h aufeinander einwirken, so werden ca. 2 mol C_2H_4 freigesetzt. Aus der tiefdunkelroten Flüssigkeit erhält man nach den Gl. (n) mit 62% Ausbeute das rotschwarze kristallisierte Gemisch aus ca. 90% *exo*- $C_5H_5Co-\eta^4$ -**4b**' und ca. 10% *endo*- $C_5H_5Co-\eta^4$ -**4b**, das nur wenig *exo*- $C_5H_5Co-\eta^4$ -**4b**" enthält (vgl. Tab. 7).

Aus 4b und $C_5H_5Rh(C_2H_4)_2$ erhält man in siedendem Toluol nach den Gl. (o) unter Ethen-Abspaltung eine dunkelrote Lösung, aus der mit 82% Ausbeute ein wachsartiges, dunkelrotes Gemisch aus ca. 88% $exo-C_5H_5Rh-\eta^4$ -4b' und ca. 12% *endo*-C₅H₅Rh-\eta⁴-4b gewonnen wird. Die Zusammensetzung der isomeren 4b/4b'-Gemische mit C₅H₅Cound C₅H₅Rh-Fragmenten ist sehr ähnlich.

Die π -Komplexierung von **4b** an Nickel-Atome wurde bereits vorläufig beschrieben⁸⁾. Das aus CDT-Nickel und **4b** mit 65% Ausbeute nach Gl. (p) hergestellte dunkelrote (Ni- $\eta^3 \eta^4$ -**4bb''**)₂ ist massenspektrometrisch (vgl. Tab. 2), NMRspektroskopisch (vgl. Tab. 4 und 6) und röntgenstrukturanalytisch⁶⁾ charakterisiert worden.

Verbindung	Mal	Gel	. m/z (%	rel. Intensität) ^{a)}	Verbindung	Mal	Gef	. m/z (%	rel. Intensität) ^{a)}
Veronitung	masse	M+	Basis- peak	Weitere charakteristische Bruchstückmassen	Verbildung	masse	M ⁺	Basis p c ak	Weitere charakteristische Bruchstückmassen
(OC) ₄ Cr-11 ⁴ -4a	359.2	359(3)	247	331(4), 303(1), 275(19), 52(81), 28(57)	$\left \left(C_2 H_4 Rh - \eta^1, \eta^4 - 3a \right)_2 \right $	622.2	622(<1)	28	594(10), 566(6), 564(8), 166(14), 152(15)
(OC) ₄ Mo−η ⁴ 4a	403.1	405(1)	28	377(4), 349(3), 347(7), 321(4), 319(10), 293(1), 291(6), 195(24)	С5H5C0-14-4a	319.1	319(38)	124	304(7), 290(14), 166(16), 152(20), 97(60), 59(80)
(OC) ₃ Fe-11 ⁴ -4a	335.1	335(7)	235	307(14), 279(58), 251(45)	C ₅ H ₅ Rh-η ⁴ -4a	363.1	363(100)	363	348(46), 334(11), 277(17), 168(23)
(OC) ₃ Ru-η ⁴ -4a	380.3	381(10)	28	353(44), 325(41), 323(51), 295(47), 267(16), 195(12)	$(ClRh-\eta^4-4a)_2$	667.1	666(2)	166	235(20), 195(42), 180(58), 152(51)
$(OC)_{3}Fe-\eta^{4}-4c$	349.1	349(4)	265	321(18), 293(52), 249(40), 237(49), 221(95), 180(30)	C5H7O2Rh−η ⁴ -4a	397.2	397(100)	397	297(19), 157(32)
(endo-Et ²)				152(25), 83(32), 56(32)	$C_2H_4(Cl)Ir-\eta^4-4a$	450.9	451(15)	28	423(18), 421(20), 393(24), 375(36), 195(12)
$(OC)_{3}Fe-\eta^{4}-4c$ $(exo-Et^{2})$	349.1	349(4)	221	321(18), 293(75), 265(83), 249(50), 237(39), 180(24), 152(18), 83(31), 56(28)	C₅H₅Co−η ⁴ −4h	335.2	335(100)	335	320(17), 306(20), 124(18)
(OC) ₃ Fe-η ⁴ -4e	349.1	349(8)	249	321(14), 293(68), 265(49),	C ₅ H ₅ Co–η ⁴ –4j	334.2	334(100)	334	319(6), 305(6), 289(20), 209(20), 124(20)
(OC) Fe n ⁴ 4f	207 1	207(9)	211	221(29) ,219(17), 180(15)	$C_5H_5Co-\eta^4-5a$	381.3	381(100)	381	366(4), 352(5)
(00)316-11-41	597.1	397(8)	511	145(11)	$C_5H_5C_0-\eta^4-5a-$	517.3	517(20)	309	489(16), 461(8), 433(6),
(OC) ₃ Fe-η ⁴ -4j	350.1	350(12)	264, 294	322(29), 266(36), 250(88), 248(42), 195(35)	η ^ν -Cr(CO) ₃				432(16), 431(42), 429(69), 381(15), 124(20), 117(28), 52(92)
(OC) ₃ Fe-η ⁴ -5a	397.2	397(6)	311	369(10), 341(21), 313(33), 295(14)	$C_5H_5Co-\eta^4-7c$ (endo-Et ²)	319.2	319(100)	319	304(14), 290(43), 233(17), 221(40), 195(15), 166(81), 138(42), 124(59), 98(36)
$(OC)_{3}Fe-\eta^{4}-7c$	335.1	335(3)	207	307(14), 279(50), 251(99), 235(50), 223(41), 166(84),	2				83(35), 59(41)
(800-21)				138(48), 98(28), 83(39), 70(34), 56(34), 43(31), 28(69)	$C_{5}H_{5}Co-\eta^{4}-7c$ (exo-Et ²)	319.2	319(100)	319	304(13), $290(35)$, $233(13)$, 221(41), $195(10)$, $166(38)$, 138(22), $124(48)$, $98(26)$, 83(24), $59(35)$
$(OC)_{3}Fe-\eta^{4}-7c$ $(exo-Et^{2})$	335.1	335(3)	207	307(17), 279(63), 251(77), 235(62), 166(88), 138(42), 98(34), 83(42), 70(31).	C₅H₅Co–η ⁴ –7d	367.3	367(100)	367	301(54)
		}		56(31), 43(29), 28(66)	Ni(η^{4} -4a) ₂	449.1	448(37)	253	237(47), 166(50), 97(48), 59(52)
$(OC)_{3}Fe-\eta^{4}-7d$ $(exo-Ph^{2})$	383.1	383(4)	299	355(14), 327(44), 283(81)					

Tab. 1. Auszüge aus den Massenspektren der 3-Methyl-C₂SiNB-π-Komplexe

³¹ EI-Massenspektren (70 eV). Angegeben sind die Massen mit dem häufigsten natürlichen Isotop ¹²C, ¹H, ¹¹B, ¹⁴N, ¹⁶O, ²⁸Si, ⁵²Cr, ⁵⁶Fe, ⁵⁸Ni, ⁹⁸Mo und ¹⁰²Ru.

2060

$4b + C_5H_5C_0(C_2H_4)_2$

Charakterisierung der π -Komplexe vom Typ 3, 4, 5 und 7

IR-Spektren

Die CO-Liganden der Carbonyl-Übergangsmetall- η^4 -4und -7-Komplexe haben IR-Absorptionsbanden mit Maxima im Bereich von 2040–1865 cm⁻¹. Die NH-Bindungen der Ligand-Übergangsmetall- η^4 -7-Komplexe absorbieren bei 3410–3330 cm⁻¹.

Massenspektren

Auszüge aus den Massenspektren der (Ligand)Übergangsmetall- π -Komplexe der 3-Methyl- und 3-Isopropenyl-C₂SiNB-Ringe sind in Tab. 1 und 2 zusammengestellt.

Bei sämtlichen Verbindungen tritt ein Molekül-Ion M⁺ auf, das allerdings bei einigen η^4 -Komplexen [z. B. (OC)₄Cr- η^4 -4a; (OC)₄Mo- η^4 -4a; (OC)₃Fe- η^4 -5b] nur von geringer In-

tensität ist. Bei π -Komplexen der Verbindung **4b**, wie z. B. bei C₅H₅Co- η^4 -**4b** und C₅H₅Rh- η^4 -**4b**, ist M⁺ die Basismasse (vgl. Tab. 2).

Bei einigen η^4 -4a-Komplexen treten in Abhängigkeit vom Ligand die charakteristischen Bruchstückmassen für (M – Neutralligand)⁺ auf; z. B. minus (CO)_n mit n = 1-4. Der zweikernige π -Komplex (Ni- $\eta^3\eta^4$ -4bb')₂ zerfällt bevorzugt unter C₂H₅-Abspaltung in ein Basisbruchstück-Ion m/z 221 [= (558 – 116)/2] sowie in dessen weitere Bruchstück-Ionen 206 (= 221 – 15) und 192 (= 221 – 29).

Tab. 2. Auszüge aus den Massenspektren der 3-Isopropenyl-C₂SiNB-π-Komplexe und der metallfreien Liganden (zum Vergleich)

		Gef.	m/z (9	6 rel. Intensität) ^{a)}
Verbindung	Mol- masse	м+	Basis- peak	Weitere charakteristische Bruchstückmassen
4b	221.2	221(100)	221	206(82), 192(84), 151(31), 137(73), 59(39)
5b	283.3	283(100)	283	268(57), 254(56), 151(20), 137(54), 59(34)
(OC)3Fe-114-4b,4b'	361.1	361(10)	277	333(26), 305(76), 249(49)
(OC) ₃ Fe-71 ⁴ -5b	423.2	423(1)	337	395(24), 367(55), 339(74), 309(25), 56(17)
(OC) ₃ Ru-η ⁴ -4b,4b°	406.3	407(9)	28	379(38), 349(41), 319(35), 308(30), 206(39), 192(39), 59(57)
С ₅ H ₅ Co-η ⁴ -4b,4b'	345.3	345(100)	345	330(7), 316(3), 304(3), 261(13), 124(21), 59(21)
C ₅ H ₅ Rh-η ⁴ -4b,4b'	389.1	389(100)	389	374(33), 360(12), 305(46), 168(34), 59(38)
(Ni-η ³ η ⁴ -4bb') ₂	559.9	558(6)	221	206(86), 192(97), 151(40), 137(83), 59(57)

^{a)} EI-Massenspektren (70 eV). Angegeben sind die Massen mit dem häufigsten natürlichen Isorop ¹²C, ¹H, ¹¹B, ¹⁴N, ²⁸Si, ⁵⁶Fe, ⁵⁸Ni und ¹⁰²Ru.

NMR-Untersuchungen

In den 2,5-Dihydro-1,2,5-azasilaborolen vom Typ 4 begegnet uns ein cyclisch konjugiertes C = C - B = N-Heterodien-System, dessen Eigenschaften sich durch die Wahl der Substituenten an den verschiedenen Ringatomen steuern läßt¹). Es gelingt z. B. die Einführung einer Isopropenyl-Gruppe in 3-Stellung (4b)^{8,11}, so daß neben dem Heterodien-System auch ein Alkadien-System im Molekül vorliegt. Einige verschiedenartig substituierte 2,5-Dihydro-1,2,5azasilaborole vom Typ **4** und deren π -Komplexe sind in Lösung bereits NMR-spektroskopisch untersucht worden³⁻⁶⁾. Hier wird über NMR-Messungen an den π -Komplexen berichtet, für die es bisher nur wenige, unvollständige Datensätze gibt^{1,7,8)}, während für die Liganden selbst^{5,6)} und für andere 2,5-Dihydro-1,2,5-elementsilaborole (Element = O¹¹⁾, S¹²⁾, Se¹³⁾, P¹⁴⁾ sowie für deren Metallkomplexe¹¹⁻¹⁵⁾ schon umfangreiches Datenmaterial vorliegt.

Für die η⁴-Komplexierung geeigneter Metallfragmente (L_nM) bieten sich bei 4a das Heterodien-System und bei 4b entweder das 4b-Heterodien- (endo) oder das 4b'- bzw. 4b"-Alkadien-System (exo) an. Mit Hilfe der ¹¹B-, ¹³C-, ^{14/15}N- und ²⁹Si-NMR-Spektroskopie lassen sich die Bindungsverhältnisse in den freien und komplexierten Heterocyclen beschreiben, und zudem werden bei bestimmten Substituenten [z. B. 4h, R⁵ = OEt, ¹⁷O-NMR] und Metallfragmenten [z. B. (C₅H₅)Co, ⁵⁹Co-NMR; (C₅H₅)Rh, ¹⁰³Rh-NMR] weitere Informationen zugänglich. Die strukturelle Charakterisierung mehrerer repräsentativer π-Komplexe im festen Zustand

mittels Röntgenstrukturanalyse^{6,7)} erlaubt zusätzlich noch die Korrelation dieser Information mit den NMR-Parametern (δ , J) für Lösungen^{17,18)}. ¹H-NMR-Spektren: Die ¹H-NMR-Daten der (Ligand)-

"H-NMR-Spektren: Die "H-NMR-Daten der (Ligand)- $Übergangsmetall-<math>\eta^4$ -C₂SiNB-Komplexe sind in Tab. 3 und 4 zusammengestellt. Über die ¹H-NMR-Daten einzelner Verbindungen wurde bereits mit deren Synthese und den direkten Strukturuntersuchungen der Komplexe berichtet⁷).

Die Zuordnung der ¹H-Resonanzen ist eindeutig. Im Vergleich zu den freien Liganden²⁻⁵⁾ werden die erwarteten Effekte beobachtet, z. B.: Unterschiedliche ¹H(SiMe)-Resonanzen für die Me₂Si-Einheit, Diastereotopie der Methylenprotonen (C⁴-CH₂), Zunahme der ¹H-Abschirmung bei der π -Komplexierung [¹H(Phenyl)-Resonanzen in (OC)₃Cr- η^4 -**5a**, ¹H(NH)-Resonanzen in den **7a**- π -Komplexen]. Ebenso wird die Gegenwart von Isomeren angezeigt, so daß hieraus bereits folgt, daß bei dem Liganden **7d** die η^4 -Komplexierung mit dem (OC)₃Fe- oder dem (C₅H₅)Co-Fragment (vgl. die Röntgenstrukturanalyse^{6.7)} nur zu den Komplexen mit der *Si*-Methyl-Gruppe auf der Seite des Metalls führt. Bemer-

			δ ¹ Η (ppm)						δ ¹ Η (ppm)		
Verbindung	LM (MHz)	HI	H ^{2'} endo exo	H3.	H ⁴ H ⁴	H ⁵ H ⁵ H ^x	Verbindung	LM (MHz)	H1.	H ^{2'} endo exo	H3.	H ^{4'} H ^{4''}	H ⁵ H ⁵ H ^x
(OC) ₃ Cr–η ⁶ –5a (zum Vergleich)	C ₆ D ₆ (400)	4.92; 4.51; 4.37	0.43	1.74	2.30 1.01	1.08 0.87	С₅Н₅Со-п⁴-4а	C ₆ D ₆ (80)	1.52	0.82 -0.35	1.30	2.92; 1.92 1.35	1.32 4.21
(OC) ₄ Cr-η ⁴ -4a	C ₆ D ₆ (80)	1.60	0.40 0.34	1.55,	2.47; =1.7 0.91	≈I.1	С ₅ Н ₅ Со⊷η ⁴ –5а	C ₆ D ₆ (80)	6.9; 6.74	0.74 0.23	1.26	2.87; ≈1.6 1.30	=1.3
(ОС) ₄ Мо-η ⁴ -4а	C ₇ D ₈ (400) -30°C	1.65	0.20 0.39	1.55	2.42; 1.66 0.82	1.59; 1.05 0.93	C ₅ H ₅ Co-η ⁴ -7c (exo-Et ²)	C ₆ D ₆ (200)	~1.3 [br]	0.71 0.0; 0.7	1.28	2.87; 1.81 1.29	1.59 1.14 4.20
(ОС) ₃ Fe-ŋ ⁴ -4а	C ₆ D ₆ (80)	1.69	0.48 0.24	1.50	2.53; 2.10 1.20	1.18	C ₅ H ₅ Co-η ⁴ -7c (endo-Et ²)	C ₆ D ₆ (200)	-1.1 [br]	1.59; 0.7 -0.39	1.28	2.87; 1.81 1.29	≈1.3 1.14 4.20
(OC) ₃ Fe-η ⁴ -5a	CD ₂ Cl ₂ (200)	7.23; 6.79	0.37 0.10	1.65	2.62; 2.19 1.30	=1.25; 0.72 1.19	С ₅ H ₅ Co-η ⁴ -5а- η ⁶ -Сr(СО) ₃	C ₆ D ₆ (400)	4.77 4.61; 4.21	1.12 -0.14	1.19	2.72; 1.31 1.25	1.81; 1.59 1.23 4.31
(OC) ₃ Fe-N ⁴ -7c (exo-El ²)	C ₆ D ₆ (200)	-0.9 [br]	0.35 0.06; 0.65	1.45	2.48; 2.10 1.15	1.45; 1.1 1.03	C ₅ H ₅ Co-η ⁴ -7d	(200)	-0.2 [br]	1.22 7.22	1.32	2.84; 1.86 1.16	1.61; 1.39 1.01 4.44
(OC) ₃ Fe-7 ⁴ -7c (endo-Et ²)	C ₆ D ₆ (200)	-0.8 [br]	0.93; 0.65 0.30	1.44	2.47; 2.10 1.14	1.45; 1.1 1.03	C₅H₅Coη⁴ ih	C ₆ D ₆ (400)	1.62	0.80 -0.33	1.34	3.04; 1.89 1.36	4.60; 4.47 1.50 4.30
(OC) ₃ Fe-η ⁴ -7d (exo-Ph ²)	CD ₂ Cl ₂ (200)	≈0.6 [br]	0.94 7.4; 7.34	1.65	2.61; 2.21 1.24	1.43 0.96	C₅H₅Co−η⁴ − 4j	C ₆ D ₆ (200)	1.50	0.75 0.40	1.30	≈2.9; 1.82 1.32	2.91 4.25
(OC) ₃ Fe7 ⁴ -7d (endoPh ²)	(200)	≈0.6 [br]	7.72; 7.54 0.18	1.84	2.67; 2.26 1.34	1.60; 1.3 1.18	Νi(η ⁴ 4a) ₂	C ₆ D ₆ (200)	2.50	0.38 0.02	1.26	1.80: 2.08 1.18	0.80; 0.95 1.13
$(OC)_{3}Fe-\eta^{4}-4c$ (endo-Et ²)	C ₆ D ₆ (200)	1.61	≈1.0 -0.28	1.46	2.54; 2.11 1.15	1.6; 1.1 1.15	C ₅ H ₅ Rb−¶⁴ −4 a 	C ₆ D ₆ (80)	1.99 [J _{RhH} = 1.5 Hz]	0.63 0.26	1.56	2.61; 2.05 1.22	1.35 4.68 [J _{RhH} =1.0Hz]
(OC) ₃ Fe-η ⁴ -4c (exo-Et ²)	C ₆ D ₆ (200)	1.63	0.41 0.12; 0.68	1.48	2.54; 2.11 1.15	1.6; 1.1 1.15	[ClRh-η ¹ ,η ⁴ -4a] ₂	C ₆ D ₆ (80)	1.73 Linien alle	0.98 [br] 0.39 sebr breit; param	1.62	2.7; 2.1 1.25 e Anteile?	=1.3
(OC) ₃ Fe-ŋ ⁴ -4e	C ₆ D ₆ (200)	1.59	0.44 0.28	1.81 1.04	2.48; 2.04 1.16	1.6; 1.1 1.10	C ₅ H ₇ O ₂ Rh-¶ ⁴ -4a	C ₆ D ₆ (80)	1.91	0.86 0.26	1.50	2.72; 2.33 1.27	1.35
(OC) ₃ Fe-¶ ⁴ -4f	CD ₂ Cl ₂ (200)	2.19	0.60 0.07	7.30	2.55; 1.99 1.37	1.66; 1.2 1.25	(С ₂ Н ₄ Rh-η ¹ ,η ⁴ -За),	C ₆ D ₆	-	0.96	1.10	2.11; 1.30	5.07 1.81 1.60 1.76; 1.74
(OC)₃Fe−η ⁴ →ij	C ₆ D ₆ (200)	1.85	0.43; 0.30	1.54	2.64; 2.24 1.16	2.62	(С ₂ Н ₄ Rb-η ¹ ,η ⁴ -3а) ₂	(400) C ₇ D ₈	-	-0.17 1.10	1.47	1.03 2.16; 1.21	1.28 3.14 3.06 1.82 2.84
(OC) ₃ Ru-η ⁴ -4a	C ₆ D ₆ (200)	1.80	0.35; 0.25	1.55	2.50; 2.15 1.12	1.50 ≈1.1	(iso-Form)	(400)		-0.14		0.95	1.59 2.52 1.27

Tab. 3. ¹H-NMR-Daten der 3-Methyl-C₂SiBN-π-Komplexe

kenswert ist auch das Auftreten von zwei ${}^{1}H(CH_{3})$ -Resonanzen für die (Acetylacetonat = acac)-Einheit in (acac)Rh-4a, die gehinderte Rotation des (acac)Rh-Fragments über dem Liganden 4a anzeigt.

Die Komplexe $(OC)_3$ Fe- η^4 -4c mit unterschiedlicher Orientierung der SiMe-Gruppe liegen in Lösung nebeneinander vor. Dies gilt auch für die *endo*- und *exo*- π -Komplexe 4b und 4b' (vgl. Tab. 4). Mittels Magnetisierungstransfer-Experimenten¹⁹ (in 1D¹⁹⁾- und 2D-NMR²⁰) wurde gezeigt, daß ihre gegenseitige Umwandlung langsam bezüglich der NMR-Zeitskala ist.

				δ ¹ H (ppm)		
Verbindung	H ¹ LM (MHz)	H ^{2'} endo exo	H ³ H ³	H ⁴ '. H ⁴ ''	H ⁵	н ^с 5 ^н 5
(OC) ₃ Fe-η ⁴ -4b	1.60 C ₇ D ₈	0.42 0.22	4.95; 4.84 1.84	2.52; 2.20 1.27	1.1	-
(OC) ₃ Fe-η ⁴ -4b'	2.44 C ₇ D ₈ (80)	0.33 0.23	1.67 1.87	≈2.1; 1.2 0.64	1.2	-
(OC) ₃ Fe-η ⁴ -5b	7.15 C ₆ D ₆ (80)	0.40 0.35	1.78 1.93	2.11; 1.22 0.75	1.1	-
	Kein (C (vgl. ¹³	C-NMR	1 ⁴ –5b' im ¹ H- .)	-NMR-Spektrus	n zu beot	achten
(OC) ₃ Ru-η ⁴ -4b	n.b. C ₆ D ₆	0.33 -0.16	4.91; 4.76 n.b.	n.b.	n.b.	-
(OC) ₃ Ru-η ⁴ -4b'	2.48 C ₆ D ₆ (200)	0.25 0.19	1.82; 1.79 1.96	2.1; 1.13 0.68	-1.0	-
С ₅ Н ₅ Со-η ⁴ -4Ъ	1.47 C ₆ D ₆	0.82 -0.30	5.13; 4.99 1.98	3.00; 2.19 n.b.	n.b.	4.30
С ₅ Н ₅ Со- 1⁴-4 b`	2.52 C ₆ D ₆ (400)	0.53 0.36	2.07; 1.01 2.12	1.37; 0.78 0.94	1.2; 1.07 1.24	4.55
C ₅ H ₅ Rh-η ⁴ -4b	1.88 C ₆ D ₆	0.63 0.16	n.b.	n.b.	n.b.	4.77
C ₅ H ₅ Rh–η ⁴ –4b'	2.46 C ₆ D ₆ (80)	0.33	2.63; 1.71 2.00	1.58; = 1.15 0.92	-1.15	5.01
(Ni-η ³ η ⁴ -4bb') ₂	1.98 C ₇ D ₈ (400)	-0.29 -1.07	4.71; 1.58 2.05	n.b. 1.61(t)	n.b. 1.36(t)	-

Tab. 4. ¹H-NMR-Daten der 3-Isopropenyl-C₂SiNB-π-Komplexe

¹¹B-NMR-Spektren: Die Abschirmung der ¹¹B-Kerne nimmt – von wenigen Ausnahmen abgesehen²¹⁾ – bei der π -Komplexierung der Borane zu^{18,22)} (Tab. 5).

Der Abschirmungsgewinn ist nur dann verhältnismäßig groß (ca. 20–27 ppm), wenn die Abschirmung der ¹¹B-Kerne in den freien Liganden niedrig ist. Die Konstanz der δ^{11} B-Werte der η^4 -Komplexe bei Änderung der Liganden in 5-Stellung [vgl. z. B. δ^{11} B von (OC)₃Fe- η^4 -4a 18.2, (OC)₃Fe- η^4 -4j 19.5, (C₅H₅)Co- η^4 -4a 18.8, (C₅H₅)Co- η^4 -4h 18.6] belegt, daß die Änderung der Abschirmung der ¹¹B-Kerne nicht mehr von B–N- bzw. B–O-(pp) π -Wechselwirkungen oder von B–N- bzw. B–O- σ -Bindungseffekten bestimmt wird. In den dreifach koordinierten Borverbindungen lassen sich Änderungen der δ^{11} B-Werte mit dem Beitrag der B_0 induzierten Zirkulation von Ladung zwischen σ - und π^* bzw. π - und σ^* -Zuständen zum paramagnetischen Term, σ^P , der Abschirmkonstante, σ , erklären^{18,22,23)}. Naturgemäß hängt die Energie der σ - und π -Zustände in den Boranen entscheidend von Elektronegativität und elektronischer Struktur der Substituenten am Bor-Atom ab. In Analogie zu der Analyse der ¹³C-Abschirmungs-Tensoren in Aren-π-Komplexen²⁴⁾ kann man schließen, daß sich der größte Beitrag zur Änderung der ¹¹B-magnetischen Abschirmung aus den nach der π -Komplexierung neu zu betrachtenden $\sigma \rightarrow$ π^* -Übergängen ergibt. Die π -Komplexierung bedingt eine Zunahme der Aufspaltung der betreffenden π - und π *-Zustände, ein Effekt, der bei Rückbindung des Metalls zum Ligand noch stärker wird. Somit verlieren wichtige Beiträge zu σ^{P} in den π -Komplexen an Bedeutung, und wir finden die δ^{11} B-Werte für sehr viele Boran- π -Komplexe (mit z.T. sehr unterschiedlicher Struktur und δ^{11} B-Werten der freien Boran-Liganden) in einem engen Bereich^{18,22)}, der auch für die hier zu besprechenden n⁴-Komplexe gilt. Folgerichtig beobachtet man für die π -Komplexe weniger Einfluß von Substituenten am Bor-Atom auf δ^{11} B als vielmehr einen merklichen Effekt des Metalls (vgl. Tab. 6), bedingt durch die Natur der π -Donor/Akzeptor-Wechselwirkungen.

Die δ^{11} B-Werte lassen somit keine konkreten Schlüsse auf die Stärke der Metall-Bor-Bindung zu. Das vorliegende Heterodien-System erlaubt aber für die η^4 -Komplexe den Vergleich der Bereiche für die δ^{11} B- und die δ^{13} C⁴-Werte (siehe unten), die bei Gleichberechtigung der C=C- und der B-N-Komponenten einander entsprechen sollten (unter Berücksichtigung der $\langle r^{-3} \rangle_{2p}$ -bedingten²⁵⁾ größeren Variation der δ^{13} C-Werte). Für die meisten π -Komplexe stimmen die Änderungen von δ^{11} B und δ^{13} C⁴ (vgl. Tab. 6) im Trend überein, doch sind die Änderungen der δ^{11} B-Werte als Funktion des Metalls viel geringer als die der δ^{13} C⁴-Werte. Dies kann ein Indiz für relativ schwache Bor-Metall-Wechselwirkungen sein.

Der δ^{11} B-Wert für (C₂H₄Rh- $\eta^1\eta^4$ -**3a**)₂ (33.4) läßt sich einordnen, wenn man das π -gebundene **3a** wegen der μ_2 -Brükkenfunktion des Stickstoff-Atoms nicht als Heterodien-System sondern als cyclisches Alkenylboran betrachtet.

In $(OC)_3Cr-\eta^6$ -**5a** ist der $\delta^{11}B$ -Wert gegenüber dem freien Liganden nicht verändert, im Einklang mit der Röntgenstrukturanalyse⁶, die eine Verdrillung der $(OC)_3Cr-\eta^6$ -Ph-Einheit gegen die C₂BN-Ebene anzeigt.

Die Präsenz der *exo*-isomeren η^4 -**4b'**-Komplexe (vgl. Tab. 7) folgt aus den ¹¹B-Resonanzen, die gegenüber dem freien **4b** um ca. 2-4 ppm zu höheren Frequenzen verschoben sind.

Zwischen dem Metall und dem trigonalen Bor-Atom der exo-isomeren **4b**'- und **4b**"-Komplexe besteht – ebenso wie bei den entsprechenden η^4 -Komplexen des zu **4b** analogen 1-Oxa-Derivates¹¹⁾ – keine Wechselwirkung.

¹³C-NMR-Spektren: Die ¹³C-Resonanzen lassen sich mittels gebräuchlicher Techniken²⁶⁾ sicher zuordnen. Die borgebundenen Kohlenstoff-Atome sind wegen der breiten ¹³C-Resonanzsignale leicht zu erkennen, wobei heteronucleare Tripelresonanz-Experimente ¹³C{¹H¹¹B} oder die Aufnahme der Spektren bei tiefer Temperatur^{18,22)} zu schärferen Resonanzsignalen führen [z. B. im Fall von (C₅H₅)Rh-η⁴-4a für ¹J(¹⁰³Rh¹³C⁴)]. Auch die Beobachtung der ²⁹Si-Satellitensignale für ¹J(²⁹Si¹³C) ist für die Zuordnung nützlich.

A	
2063	

Tab. 5. ¹³C- und Heteroatom-NMR-Daten der 3-Alkyl(phenyl)-C₂SiNB- π -Komplexe (LM = Lösungsmittel)

	$\delta^{11}B^{a-c)}$		δ ¹³ C (ppm) [J ²⁹	Si ¹³ C (Hz)] 5	0.3 MHz	,		δ ¹⁴ N	δ ²⁹ Si	δΧ
Verbindung	64.2MHz (ppm) (LM)	C ^{1'} (LM)	exo-C ^{2'} , endo-C ^{2'}	C ³ , C ^{3,}	C ⁴ [br] C ⁴ C ⁴ ''	C ^{5'} [br] C ^{5'}	C ^x	MHz (ppm) (C ₇ D ₈)	MHz (ppm) (C ₇ D ₈)	(ppm) (LM)
(OC) ₄ Cr-η ⁴ -4a	21.1 (C ₇ D ₈)	31.9 (C ₇ D ₈ , -20°C)	3.7 [50.6] -2.9 [59.5]	104.1 [78.2] 12.3	115.0 22.2 15.6	6.2 10.5	229.8 228.2 227.7 224.4	-358.0	17.9	405±4[br] (¹⁷ O) (C ₆ D ₆ ,
(OC) ₄ Mo-η ⁴ -4a	24.1 (C ₆ D ₆)	32.2 (C ₇ D ₈ , -50°C)	3.7 [n.b.] -2.6 [n.b.]	103.9 [n.b.] 12.9	118.7 22.8 15.9	5.6 10.6	220.2 218.1 215.8 214.9	n.g.	n.g.	27° <u>C</u>)
(OC) ₃ Fe-η ⁴ -4a	18.2 ^{b)} (C ₇ D ₈)	32.9 (C ₇ D ₈ , -20°C)	3.9 [47.8] -4.5 [57.8]	66.3 [77.2] 12.8	103.4 22.1 16.6	2.7 11.5	213.6 (CO)	-372.0	23.2	352±1 (¹⁷ O)
(OC) ₃ Fe-η ⁴ -5a	17.9 (C ₆ D ₆)	144.1 i 127.9 o 129.2 m 125.4 p (C ₆ D ₆)	5.4 [47.8] -3.9 [59.9]	66.1 12.9	103 22.1 16.5	5.1 11.9	213.4 (CO)	n.g.	25.8	-
$(OC)_{3}Fe-\eta^{4}-4c$ (endo-Et ²)	18.6 ^{b)} (C ₆ D ₆)	32.8	1.4 4.2; 7.4	65.6 13.3	103.4 21.8 16.9	3.3 11.8	213.9 (CO)		24.4	
$(OC)_{3}Fe-\eta^{4}-4c$ $(exo-Et^{2})$		33.2 (C ₇ D ₈ , -50°C)	7.8; 7.4 -0.6 [56.8]	65.1 13.7	103.8 22.2 17.2	3.8 12.2	213.9 (CO)		25.0	
(OC) ₃ Fe−η ⁴ −4e	18.7 ^{b)} (C ₆ D ₆)	32.7 (C ₇ D ₈ , –50°C)	4.5 [48.7] 3.2 [56.1]	74.4 [76.8] 22.1 17.0	102.6 22.2 17.5	3.6 11.9	213.9 (CO)	-	23.5	-
(OC) ₃ Fe-η ⁴ -4f	19.2 ^{c)} (CD ₂ Cl ₂)	32.8 (C ₇ D ₈ , −50°C)	4.0 [49.4] -4.6 [58.5]	76.4 [74.1] 140.7 i 130.7 o 128.5 m 125.6 p	103.0 23.5 17.5	3.8 11.3	212.9 ^{a)} (CO)	_	24.1	_
(OC) ₃ Fe-η ⁴ -4j	19.8 (C ₆ D ₆)	35.6 (C ₆ D ₆)	4.3 [46.8] -4.9 [58.0]	61.6 [n.b.] 13.1	85.0 22.6 16.6	40.1	214.0 (CO)	n.g.	19.7	-
$(OC)_{3}Fe-\eta^{4}-7c$ $(exo-Et^{2})$	18.0 ^{b)} (C ₆ D ₆)	- (C ₇ D ₈ , -50°C)	15.2 [49.8](CH ₂) 6.7 -4.5 [58.0](CH ₃)	68.2 [76.3] 13.3	105.0 22.3 16.4	5.6 11.4	213.4 ^{a)} (CO)	-385.4 ^{b)}	22.2	360.2 (¹⁷ O)
$(OC)_{3}Fe-\eta^{4}-7c$ (endo- Et^{2})	18.0 ^{b)} (C ₆ D ₆)	(C ₇ D ₈)	4.2 [47.8](CH ₃) 5.7 [60.0](CH ₂) 7.6	68.6 [75.8] 13.4	105.0 21.9 16.2	5.6 11.5	213.5 ^{a)} (CO)	–384.3 ^{b)}	22.3	360.2 (¹⁷ O)
(OC) ₃ Fe-n ⁴ -7d (exo-Ph ²)	18.4 ^{b)} (CD ₂ Cl ₂)	(CD ₂ Cl ₂)	141.3 i [60.5] 133.3 o 128.2 m 130.3 p -4.6 [58.5]	69.5 [79.9] 13.5	105.3 22.6 16.2	5.6 10.7	213.6 (CO)	-382.2 ^{b)}	8.1	360.8 (¹⁷ O)
$(OC)_3Fe-\eta^4-7d$ (endo-Ph ²)	18.7 ^{b)} (CD ₂ Cl ₂)	(CD ₂ Cl ₂)	6.7 [n.b.] 135.2 i 133.7 o 128.0 m 130.1 p	66.4 13.6	104.4 21.6 16.2	5.1 11.2	212.7 (CO)			_
C ₅ H ₅ Co−η ⁴ −4a	18.8 (C ₇ D ₈)	32.8 (C ₇ D ₈ . 60°C)	3.2 [44.9] -2.6 [58.3]	50.5 [79.1] 14.1	93.4 23.0 16.8	≈5 12.5	79.1 (C ₅ H ₅)	-395.0	8.3	-1225 (⁵⁹ Co)
C₅H₅Co–η ⁴ –5a	20.3 (C ₆ D ₆)	146.4 i 126.9 o 128.4 m 123.8 p (C ₇ D ₈)	4.0 [46.3] -1.7 [60.1]	50.9 [n.b.] 13.9	94.1 22.9 16.5	6.0 12.7	79.6 (C ₅ H ₅)	n.b.	11.0	_

l	ab.	5.	(Fortsetzung)
-			(=

	$\delta^{11}B^{a-c}$		$\delta^{-13}C$ (ppm) [J ²⁹	Si ¹³ C (Hz)] 5	0.3 MHz			δ ¹⁴ N	δ ²⁹ Si	δΧ
Verbindung	64.2 MH z (ppm) (LM)	C ^{l'} (LM)	exo-C ^{2'} endo-C ^{2'}	C ³ , C ^{3,}	C ⁴ [br] C ⁴ '' C ^{4''}	C ^{5'} [br] C ^{5'}	Cx	MHz (ppm) (C ₇ D ₈)	MHz (ppm) (C ₇ D ₈)	(ppm) (LM)
$C_5H_5Co-\eta^4-5a-\eta^6-Cr(CO)_3$	20.0 (C ₆ D ₆)	125.4 i 92.0; 91.5; 91.0; 90.6; 90.1 (C ₇ D ₈ , -50°C)	5.2 [45.8] -1.1 [58.8]	51.7 [79.3] 13.7	92.6 22.8 16.7	5.7 12.9	79.6 (C ₅ H ₅) 233.9 (CO)	n.g.	15.2	-
C ₅ H ₅ Co-n ⁴ -7d	18.9 (CD ₂ Cl ₂)	(CDCl ₃)	-3.7 [61.4] 140.9 i [60.6] 132.4 o 127.6 m 129.2 p	51.8 [81.4] 14.4	95 22.8 16.3	5.9 11.0	78.4 (C ₅ H ₅)	-389.8 ^{c)}	-6.5	-
C ₅ H ₅ Co-η ⁴ -4h	18.6 (C ₆ D ₆)	31.0 (C ₇ D ₈)	3.5 [44.3] -2.8 [66.9]	46.7 [78.8] 13.7	76.1 22.9 16.8	61.4 18.5	78.8 (C ₅ H ₅)	-408	4.0	27±4 (¹⁷ O) (C ₇ D ₈) -1160 (⁵⁹ Co)
C5H5C0-n ⁴ -4j	18.2 (C ₆ D ₆)	33.9 (C ₆ D ₆)	3.7 [43.7] -2.7 [n.b.]	47.3 [n.b.] 14.3	80.8 23.4 16.4	41.7	78.6 (C ₅ H ₅)	n.g.	5.7	-
$C_{5}H_{5}Co-\eta^{4}-7c$ (exo-Et ²)	18.5 ^{a)} (C ₇ D ₈)	- (C ₇ D ₈ , -50°C)	15.1 7.1 -2.2 [58.5]	50.8 [n.b.] 14.8	94.9 23.2 16.7	6.5 12.1	78.7 (C ₅ H ₅)	-408.3 ^{d)}	6.4	-
$C_5H_5Co-\eta^4-7c$ (endo- Et^2)	18.5 ^{a)} (C ₇ D ₈)	 (C ₇ D ₈ , -50°C)	8.1 [60.3] 3.9 [44.1] 8.6	51.6 [n.b.] 14.7	96.1 23.0 16.6	7.0 12.0	78.7 (C ₅ H ₅)	-407.0 ^{e)}	5.9	-
$Ni(\eta^4-4a)_2$	25.0 (C ₆ D ₆)	30.1 (C ₇ D ₈)	1.0 [n.b.] -3.1 [n.b.]	81.5 [n.b.] 13.2	110.8 22.5 14.9	5.4 9.6	-	-342	5.8	_
$(OC)_3 Ru-\eta^4-4a$	17.8 (C ₆ D ₆)	33.8 (C ₇ D ₈)	3.6 [47.8] -4.5 [58.0]	59.5 [78.1] 13.2	102 22.2 17.3	3.0 12.3	200.9 (CO)	-368	28.5 [78.1;57.4 47.6]	-
C ₅ H ₇ O ₂ Rh-n ⁴ -4a	22.9 (C ₆ D ₆)	29.3 (C ₇ D ₈)	3.0 [48.0] -2.4 [57.1]	68.5 ^{f)} [78.5] 11.6	98.5 21.8 14.3	4.7 10.8	186.3 184.9 100.4 27.1; 26.7 (C ₅ H ₇ O ₂)	-378	5.7 ^{g)}	2343.8 (¹⁰³ Rh)
CIRh-ŋ ⁴ -4a	24.5 (C ₆ D ₆)	31.6 (C ₆ D ₆)	2.9 [n.b.] -2.5 [n.b.]	68.8 [n.b.] 13.3	98.3 22.3 14.1	4.6 10.7	-	-380	8.1 ^{h)}	-
C5H5Rh-n ⁴ -4a	18.6 (C ₆ D ₆)	34.9 (C ₆ D ₆)	4.0 [43.3] -1.9 [58.1]	51.1 ⁱ⁾ [n.b.] 14.7 ^{j)}	96.0 ^{k)} 23.0 17.2	4.2 13.8	81.9 ^{l)} (C ₅ H ₅)	-370 (C ₆ D ₆)	$(C_6 D_6)$	-171.0 (¹⁰³ Rh)
$\left (C_2H_4Rh-\eta^1,\eta^4-3a)_2 \right $	33.4 (C ₆ D ₆)	(C ₆ D ₆)	7.7 [n.b.] 0.5 [n.b.]	85.8 [n.b.] 13.6	112 22.1 13.5	13.5 11.4	68.6 (C ₂ H ₄)	n.g.	n.g.	°
$C_2H_4(Cl)Ir-\eta^4-4a$	27.7 (C ₆ D ₆)	30.4 (C ₇ D ₈ , -30°C)	1.0 [49.5] -4.2 [56.3]	61.4 [n.b.] 12.3	87.4 19.9 13.2	3.8 9.8	52.5 (C ₂ H ₄)	-323	7.6	-

^{a)} $J({}^{57}Fe{}^{13}C) = 28.0 \text{ Hz.} - {}^{b)}J({}^{15}N{}^{1}\text{H}) = 78.1 \text{ Hz.} - {}^{c)}J({}^{15}N{}^{1}\text{H}) = 79.5 \text{ Hz.} - {}^{d)}J({}^{15}N{}^{1}\text{H}) = 77.6 \text{ Hz.} - {}^{c)}J({}^{15}N{}^{1}\text{H}) = 80.1 \text{ Hz.} - {}^{b)}J({}^{103}Rh{}^{13}C) = 12.7 \text{ Hz.} - {}^{b)}J({}^{103}Rh{}^{29}\text{Si}) = 1.2 \text{ Hz.} - {}^{b)}J({}^{103}Rh{}^{29}\text{Si}) = 1.3 \text{ Hz.} - {}^{i)}J({}^{103}Rh{}^{13}C) = 13.3 \text{ Hz.} - {}^{j)}J({}^{103}Rh{}^{13}C) = 13.3 \text{ Hz.} - {}^{j)}J({}^{j}C({}^{$

Die Verschiebung der ${}^{13}C^{3,4}$ -Resonanzen zu niedrigen Frequenzen bei der π -Komplexierung sind von besonderem Interesse, vergleicht man mit analogen $\delta^{13}C$ -Werten von Butadien- η^4 -Komplexen ${}^{27,28)}$. Der Bereich für $\Delta\delta^{13}C^3$ beträgt für η^4 -**4a**-Komplexe ca. 54 ppm, während dieser bei analogen 1,3-Butadien- η^4 -Komplexen lediglich ca. 25 ppm ausmacht. Auch die Spanne für die $\delta^{13}C^4$ -Werte (ca. 25 ppm) ist deutlich größer als in den 1,3-Butadien- η^4 -Komplexen (ca.

Übergangsmetall-n-Komplexe organosubstituierter 2,5-Dihydro-1,2,5-azasilaborole

Tab. 6. Vergleich der $\delta^{13}C^{3,4}$, $\delta^{11}B$ - und $\delta(^{n}El)$ -Werte der L_nM- η^{4} -4a-Komplexe sowie analoger 2,5-Dihydro-1,2,5-elementsilaborole (Elementgruppe El = S¹², Se¹³, PC₆H₅¹⁴)

El	L _n M	δ ¹³ C ³	$\delta^{13}C^4$	$\delta^{11}B$	δ(ⁿ El)
CH ₃ N	(OC) ₃ Fe	66.2	103.6	18.2	$-372(^{14}N)$
C ₆ H ₅ P		67.2	109.0	13.1	- 78.0(³¹ P)
S		69.1	107.4	25.6	
Se		69.0	105.1	29.3	$-549.4(^{77}Se)$
CH ₃ N	(OC) ₃ Ru	59.5	102.0	17.8	$-368(^{14}N)$
C ₆ H ₅ P	-	60.4	110.3	12.5	$-97.8(^{31}P)$
S		61.9	107.4	17.8	-
Se		61.1	105.0	25.7	$-566.5(^{77}Se)$
CH ₃ N	(C5H5)Co	50.5	93.4	18.8	-395(¹⁴ N)
C ₆ H ₅ P		52.8	98.3	15.9	$-96.9(^{31}P)$
S		55.1	99.2	27.6	-
Se		55.1	97.0	33.1	-726.6(⁷⁷ Se)
CH ₃ N	LNi	82.0	111.2	25.0	$-342(^{14}N)$
C ₆ H ₅ P		89.0	118.2	26.3	-100.3(³¹ P)
S		97.2	120.8	32.9	-
Se		96.5	119.4	37.0	-470.4(⁷⁷ Se)

10 ppm). Somit betreffen die Änderungen der π -Bindung des Liganden zum Metall in dem C = C - B - N-System vorwiegend die C³ = C⁴-Bindung.

Während die δ^{11} B-Werte in den π -Komplexen von den *B*-Substituenten (z. B. R⁵ = Et, OEt, NMe₂) kaum betroffen sind, verschieben sich die ¹³C³- (ca. 3 – 5 ppm) und besonders die ¹³C⁴-Resonanzen (ca. 15–19 ppm) zu niedrigen Frequenzen, wenn anstelle von R⁵ = Et der *B*-Substituent R⁵ = OEt oder NMe₂ ist. Der Einfluß von R⁵ auf die $\delta^{13}C^{34}$ -Werte in den freien Liganden ist relativ gering: $\delta^{13}C^3$, Bereich 1.1 ppm; $\delta^{13}C^4$, Bereich 3.4 ppm. Die π -komplexierte C³ = C⁴-Bindung spricht somit empfindlich auf Änderungen des Bindungssystems an.

Die ¹³C^{3,4}-Resonanzen von $(C_2H_4Rh-\eta^1\eta^4-3a)_2$ sind wie die ¹¹B-Resonanz gegenüber den übrigen Rhodium-Komplexen merklich zu höheren Frequenzen verschoben, da die C = C - B - N-Einheiten hier nicht als Heterodien-Systeme aufzufassen sind. Das ¹³C-NMR-Spektrum des roten $(C_2H_4Rh-\eta^1\eta^4-3a)_2$ entspricht aufgrund der Röntgenstrukturanalyse⁶⁾ dem zentrosymmetrischen QQ-Isomer, das wie das entsprechende $[R_2PRh(CO)_2]_2$ -Isomer¹⁶⁾ aufgebaut ist.

Für die *exo*-**4b'**-Komplexe sind die Bereiche der $\delta^{13}C^{3',4}$ und $\delta^{13}C^{3,3'}$ -Werte vergleichbar mit den Bereichen für andere 1,3-Butadien- η^4 -Komplexe. Die $\Delta^{13}C$ -Werte relativ zu *endo*-**4b** lassen sich wie bei den entsprechenden 1-Oxa-Derivaten erklären¹¹.

Intensitätsschwache ¹³C-Resonanzen weisen auf die Existenz geringer Mengen ($\leq 5\%$ im Gemisch) der *exo*-Isomeren (OC)₃Fe- η^4 -**4b**", (C₅H₅)Co- η^4 -**4b**" und (C₅H₅)Rh- η^4 -**4b**" hin.

Die ¹³C(C \equiv O)-Resonanzen der Cr-, Mo-, Fe- und Ru-Komplexe finden sich im Erwartungsbereich²⁶⁾. (OC)₄Cr- η^4 -4a hat bei -20 °C in [D₈]Toluol drei ¹³C(C \equiv O)-Resonanzen (2:1:1), die bei Raumtemperatur in zwei breite Signale (1:1) übergehen. Die Konformationslabilität des Komplexes

Chem. Ber. 122 (1989) 2055-2073

2065

ist bei $(OC)_4Mo-\eta^4$ -4a noch stärker ausgeprägt. Die ¹³C(C = O)-Resonanzen aller $(OC)_3Fe$ - und $(OC)_3Ru-\eta^4$ -Komplexe sind bei Raumtemperatur verbreitert, spalten aber bei tiefer Temperatur in drei Resonanzen auf²⁹⁾. Bei den $(C_5H_5)Co$ - und $(C_5H_5)Rh-\eta^4$ -4a-Komplexen und den entsprechenden *endo*-4b-Komplexen fällt auf, daß die ¹³C(C₅H₅)-Resonanzen um ca. 1-3 ppm aus dem üblichen Bereich zu niedrigen Frequenzen verschoben sind.

^{14,15}*N-NMR-Spektren:* Die ¹⁵N-NMR-Spektren einiger η^4 -7c- und -7d-Komplexe wurden mittels der INEPT-Pulsfolge³⁰⁾ registriert (vgl. Tab. 5). Ohne NH-Gruppierung waren die Messungen bisher erfolglos, auch nach 15 h Meßzeit mit verschiedenen Techniken [z. B. für (OC)₃Fe- η^4 -4j]. Zur Ermittlung der δ N-Werte der meisten η -Komplexe wurden daher die ¹⁴N-NMR-Spektren aufgenommen.

Für alle bisher bekannten ¹⁴N-NMR-Spektren von π komplexierten Bor-Stickstoff-Verbindungen ist die magnetische Abschirmung des ¹⁴N-Kerns im π -Komplex erwartungsgemäß größer als im freien Ligand³¹⁾. Die vorliegenden η⁴-Komplexe geben erstmals die Möglichkeit, den Einfluß verschiedener Metallfragmente auf δ^{14} N-Werte in π -Komplexen zu studieren. Für die (OC)₃Fe- ($\delta^{14}N$ – 372, $\delta^{13}C^3$ 66.2), $(C_5H_5)Co^{-1}(\delta^{14}N - 395, \delta^{13}C^3 50.5)$ und Ni- η^4 -4a-Komplexe ($\delta^{14}N - 342$, $\delta^{13}C^3$ 82.0) folgen die $\delta^{14}N$ -Werte im Trend dem Verlauf der δ^{13} C³-Werte (vgl. Tab. 6). In Ni-(η^4 -4a), sind die beteiligten ¹³C^{3,4}-, ¹¹B- und ¹⁴N-Kerne relativ wenig abgeschirmt. Dagegen sind die ¹⁴N-Kerne in (OC)₃Ru- η^4 -4a ($\delta^{14}N - 368, \delta^{13}C^3$ 59.5) und in (C₅H₅)Rh- η^4 -4a ($\delta^{14}N$ -370, $\delta^{13}C^3$ 51.1) schwächer abgeschirmt als die $\delta^{13}C^3$ -Werte vermuten lassen (vgl. auch die Diskussion der δ^{59} Co- und δ^{103} Rh-Werte). Bemerkenswert gering ist die ¹⁴N-magnetische Abschirmung für C₂H₄(Cl)Ir- η^4 -4a ($\delta^{14}N$ – 323). Vermutlich ändert sich mit zunehmendem Elektronenreichtum in der Reihe Fe, Co, Ni die Natur der Metall-Stickstoff-Bindung. Innerhalb einer Gruppe (z. B. Fe zu Ru, Co zu Rh) kann der M-N-σ-Bindungsanteil gegenüber der M-BN- π -Bindung zunehmen.

Die δ^{14} N-Werte der *endo*- π -Komplexe LM- η^4 -**4b** verhalten sich wie die von LM- η^4 -**4a**. Die ¹⁴N-Resonanzen der *exo*-Isomeren LM- η^4 -**4b'** finden sich im charakteristischen Bereich für Aminoborane, kaum verschoben relativ zu **4b** (δ^{14} N – 287).

¹⁷O-NMR-Spektren: In (C₅H₅)Co-η⁴-**4h** ändern sich die δ¹⁷O-Werte gegenüber **4h** wie erwartet: Der entschirmende Einfluß der Nachbarschaft des ¹⁷O-Kerns zum trigonal-planar umgebenen Bor-Atom entfällt (vgl. z. B. δ¹⁹F von 1,4-Difluor-1,4-diborin und seinen π-Komplexen³²).

Die δ^{17} O-Werte der gemessenen 17 O(C = O)-Resonanzen finden sich im Erwartungsbereich für Metallcarbonyle ³³, für die 17 O(C = O)-Kerne in (OC)₄Cr- η^4 -4a wird aber ein Abschirmungsverlust von ca. 30 ppm gegenüber Cr(CO)₆ gefunden. Die 17 O(C = O)-Resonanz in (OC)₃Fe- η^4 -4a ist dagegen gegenüber Fe(CO)₅ um 36 ppm zu niedrigeren Frequenzen verschoben. Die δ^{13} C(C = O)-Werte der (OC)₃Fe- η^4 -Komplexe nehmen nur einen Bereich < 2 ppm ein, wohingegen der Bereich für die δ^{17} O-Werte für (OC)₃Fe- η^4 -4a (+ 352.0) und (OC)₃Fe- η^4 -4b, b', b'' (exo 357.5, endo 366.0) 14 ppm überstreicht.

			δ ¹³ C (p	pm) [J ²⁹ Si ¹³ C	(Hz)]				- 20	
	δ ^Π Β			C ³ ,	$C^{4}_{4}[br]$	5'		δ "*N	δ ²⁹ Si	δΧ
Verbindung	(ppm)		endoC ²	C3,	C4''	C^{5}	С	(ppm)	(ppm)	(ppm)
	(LM)							$(C_7 D_8)$	$(C_7 D_8)$	$(C_7 D_8)$
(OC) ₃ Fe-η ⁻ -4b (orange)	$(C_7 D_8)$	32.7 (C ₇ D ₈)	4.3 [48.4] -4.1 [58.8]	74.5 [n.b.] 143.9 114.5 26.9	101.4 23.6 17.5	3.6 11.4	(CO)	-372	23.6	(¹⁷ O)
(OC) ₃ Fe-η ⁴ -4b' (gelb)	51.2 (C ₇ D ₈)	27.8 (C ₇ D ₈)	-1.3 [56.6] -1.9 [53.0]	98.2 [n.b.] 111.6 46.2 23.9	77.4 23.0 19.4	8.0 9.4	211.8 (CO)	-282	16.7 18.3 (exo')	357.5 (¹⁷ O)
(OC) ₃ Fe-η ⁴ -5b	51.7 (C.D.)	144.9 i 129.4 o	-0.5 [n.b.] -0.8 [n.b.]	97.3 [n.b.] 111.7	75.0 23.0	8.6 10.2	216.5 210.3	n.b.	n.b.	-
(ca. 95% im Gemisch)	6-6-6	127.0 m 124.8 p (C ₇ D ₈ ; -50°C)		46.7 24.0	19.9		209.3 (CO)			
$(OC)_{3}Fe-\eta^{4}-5b'$	51.7 (C.D.)	n.b.	1.4	98.8 [n.b.]	75.6	8.9	n.b.	n.b.	n.b.	-
(ca. 5% im Gemisch)	(0606)		1.0	n.b.	n.b.	10.2				
C5H2Co−η ⁴ −4b	19.6 (C ₆ D ₆)	32.7 (C ₇ D ₈)	3.4 [45.0] -1.3 [60.0]	69.7 [n.b.] 147.8 111.2 26.4	n.b. 24.3 17.2	n.b. 12.0	79.4 (C ₅ H ₅)	-390	8.5	-
С ₅ Н ₅ Со-η ⁴ -4b'	50.6 (C ₆ D ₆)	28.3 (C ₇ D ₈)	-1.1 [51.3] -0.6 [55.0]	88.6 [79.3] 101.6 37.2 24.5	64.0 22.6 17.4	9.2 9.1	80.5 (C ₅ H ₅)	-288	14.1	-1300 (⁵⁹ Co)
С ₅ H ₅ Co-η ⁴ -4b ^{••k)}	50.6 (C ₆ D ₆)		1.6 ¹⁾ 1.3				80.8 (C ₅ H ₅)		11.0	
(Ni-η ³ η ⁴ -4bb*) ₂	26.4 (C ₆ D ₆)	30.4 (C ₇ D ₈)	0.1 [48.8] -0.1 [57.4]	73.4 [n.b.] 98.6 64.0 24.4	75.0 24.4 19.1	5.9 10.2	_	-325	-1.1	_
(OC) ₃ Ru−η ⁴ −4b	17.5 (C ₆ D ₆)	33.4 (C ₇ D ₈ ; –50°C)	4.2 [n.b.] -4.4 [n.b.]	72.3 144.0 115.5 27.8	99.9 23.5 18.6	2.8 12.3	201.7 200.1 199.9 (CO)	n.b.	28.2	_
(OC) ₃ Ru-7 ⁴ -4b`	49.6 (C ₆ D ₆)	27.7 (C ₇ D ₈ ; –50°C)	-0.5 [n.b.] -2.2 [n.b.]	99.6 [74.3] 116.8 40.4 24.5	69.3 22.8 20.9	7.9 10.6	202.9 196.1 195.7 (CO)	n.b.	15.8	-
C ₅ H ₅ Rh–η ⁴ –4b	18.6 (C ₇ D ₈)	34.9 (C ₇ D ₈)	4.6 [42.5] -1.2 [58.5]	68.5 ^{a)} [n.b.] 146.3 112.7 26.7	n.b. 24.2 18.0	n.b. 13.4	82.2 ^{b)} (C ₅ H ₅)	-370	14.2 ^{c)}	-110.4 (¹⁰³ Rh)
С ₅ Н ₅ Rh–ղ ⁴ –4b՝	49.4	28.2 (C ₇ D ₈)	-1.6 [52.3] -0.1 [56.1]	89.5 ^{d)} [n.b.] 101.6 ^{e)} 39.3 ^{f)} 24.4	70.9 22.0 18.6 ^{g)}	9.0 9.3	84.0 ^{b)} (C ₅ H ₅)	288	13.8 ^{h,i)}	-736.6 (¹⁰³ Rh)
C5H5Rh-9 ⁴ -4b"	(C ₇ D ₈)		2.2 ^{l)} 0.7				84.3 (C ₅ H ₅)		10.7 ^{j)}	-758.0 (¹⁰³ Rh)

Tab. 7. ¹³	C- und	Heteroatom-N	NMR-Daten	der 3-Isopr	openyl-C	2 ₂ SiNB-π-Kom	plexe
-----------------------	--------	--------------	-----------	-------------	----------	---------------------------	-------

^{a)} $J({}^{103}\text{Rh}{}^{13}\text{C}) = 14.2 \text{ Hz}. - {}^{b)} J({}^{103}\text{Rh}{}^{13}\text{C}) = 5.5 \text{ Hz}. - {}^{c)} J({}^{103}\text{Rh}{}^{29}\text{Si}) = 2.2 \text{ Hz}. - {}^{d)} J({}^{103}\text{Rh}{}^{13}\text{C}) = 7.6 \text{ Hz}. - {}^{c)} J({}^{103}\text{Rh}{}^{13}\text{C}) = 6.0 \text{ Hz}. - {}^{f)} J({}^{103}\text{Rh}{}^{13}\text{C}) = 13.5 \text{ Hz}. - {}^{g)} J({}^{103}\text{Rh}{}^{13}\text{C}) = 1.6 \text{ Hz}. - {}^{h)} J({}^{103}\text{Rh}{}^{13}\text{C}) = 1.1 \text{ Hz}. - {}^{i)} J({}^{103}\text{Rh}{}^{29}\text{Si}) = 1.6 \text{ Hz}. - {}^{j)} J({}^{103}\text{Rh}{}^{29}\text{Si}) = 1.6 \text{ Hz}. - {}^{j)} J({}^{103}\text{Rh}{}^{29}\text{Si}) = 1.5 \text{ Hz}. - {}^{k)} \text{ Anteil } < 5\%. - {}^{h)} \text{ Weitere} {}^{13}\text{C}\text{-Resonanzen wegen Uberlappung mit anderem intensivem Signal nicht eindeutig zuzuordnen.}$

²⁹Si-NMR-Spektren: Die ²⁹Si-Resonanzen konnten mittels der INEPT-Pulssequenz^{30c,d)} (refokussiert und mit ¹H-Entkopplung) rasch detektiert werden. Isomeren-Gemische sind gut zu charakterisieren (große $\Delta\delta^{29}$ Si-Werte, Singuletts oder

bei den Rh-Komplexen Dubletts). Die Existenz der *exo*-Isomeren (OC)₃Fe- η^4 -**4b**", (C₅H₅)Co- η^4 -**4b**" und (C₅H₅)Rh- η^4 -**4b**" läßt sich dadurch leicht nachweisen. Die Röntgenstrukturanalysen der verschiedenen π -Komplexe^{6,12,13,15} schließen bindende N-Si-Wechselwirkungen aus. Um so erstaunlicher ist der große Bereich der δ^{29} Si-Werte für die verschiedenen Reihen der π -Komplexe mit unterschiedlichen Heteroatomen in 1-Stellung (vgl. die Übersicht in Tab. 8).

Tab. 8. Vergleich der δ^{29} Si-Werte der verschiedenen 2,5-Dihydro-1,2,5-elementsilaborole und ihrer π -Komplexe [Elementgruppe El = NCH₃ (4a), O¹¹, S¹², Se¹³¹, PC₆H₅¹⁵]

L _n M El	-	AlCl ₃	(OC) ₃ Fe	(OC) ₃ Ru	(C ₅ H ₅)Co	(C ₅ H ₅)Rh	LNi
CH ₃ N (4a)	13.6	25.5	23.2	28.4	8.3	13.2	5.8
C ₆ H ₅ P	16.1	11.6	29.7	40.9	2.7	-	-
0	26.8	47.4	-	-	-	-	-
s	27.1	34.5	44.6	50.6	22.2	-	20.7
Se	24.2	28.8	42.2	49.3	18.3	-	17.4

Die δ^{29} Si-Werte werden vom Heteroelement in 1-Stellung bestimmt, die Änderung der δ^{29} Si-Werte ist hauptsächlich vom Metallfragment (L, M) abhängig. Für einen zunehmend entschirmenden Einfluß ergibt sich die Reihenfolge LNi < $(C_5H_5)Co < (C_5H_5)Rh < (OC)_3Fe < (OC)_3Ru$. Auf die ²⁹Si-Abschirmung wirkt sich die Art der Bindung des Metalls an das Heteroelement in 1-Stellung aus. Die δ^{29} Si-Werte der exo-4b'- und -4b"-n⁴-Komplexe sind gegenüber 4b kaum verschoben, d. h. die π -Komplexierung an der C³ = C⁴-Bindung beeinflußt die ²⁹Si-Abschirmung nur wenig (vgl. auch Lit.¹¹). Bekanntlich nimmt die magnetische Abschirmung des ²⁹Si-Kerns ab, wenn das benachbarte Element als σ -Donor fungiert; vgl. δ^{29} Si-Werte der AlCl₃-Komplexe der C_2 SiElB-Ringe mit Element = $N^{1,5}$, O^{11} , S^{12} , Se^{13} . Bei den $(OC)_3$ Fe- und $(OC)_3$ Ru- η^4 -4a, b-Komplexen wird dieser ²⁹Si-Abschirmungsverlust gegenüber dem freien Liganden fast erreicht (M = Fe) oder sogar übertroffen (M = Ru). Noch stärker entschirmt sind die ²⁹Si-Kerne in den L_nM- η^4 -C₂SiElB-Komplexen [L_nM = (OC)₃Fe, (OC)₃Ru; El = S, Se, P].

Bei den AlCl₃-Komplexen treten große Differenzen Δ^{29} Si gegenüber den freien Liganden nur dann auf, wenn dem Silicium-Atom stark elektronegative Atome benachbart sind (z. B. 4a-AlCl₃: Δ^{29} Si = 11.9; El = O: Δ^{29} Si = 20.6), während bei weniger elektronegativen Atomen am Silicium mit gegenläufigen Effekten gerechnet werden muß (El = S: Δ^{29} Si = 7.4; El = Se: $\Delta\delta^{29}$ Si = 4.6). Umgekehrt findet man bei der π -Komplexierung mit L_nM = (OC)₃Fe, (OC)₃Ru große Δ^{29} Si-Werte für weniger elektronegative Gruppen El (vgl. Tab. 8 für El = S, Se).

⁵⁹Co- und ¹⁰³Rh-Resonanzen: Die breiten ⁵⁹Co-NMR-Signale der verschiedenen Komplexe (C₃H₃)Co-η⁴-4a ($h_{1/2}$ ca. 12-25 kHz) liegen um -1200 ± 150 ppm im typischen Bereich für (C₃H₃)Co-Alkadien-η⁴-Komplexe^{34,35)}. Für das 1:9-Isomerengemisch aus (C₃H₃)Co-η⁴-4b und -4b' findet man nur eine breite δ⁵⁹Co-Resonanz bei -1300 ± 50 ppm, ähnlich wie beim 1-Selena-Derivat (δ⁵⁹Co -1040 ± 50). Die Messungen der ¹⁰³Rh-NMR-Spektren lassen sich mittels 2D-³⁶⁾, 1D-¹H{¹⁰³Rh}-³⁷⁾, INEPT-Experimenten³⁰⁾ oder direkt [¹⁰³Rh{¹H}^{38,39}] durchführen. Die drei isomeren (C₃H₃)Rh-η⁴-4b, -4b' und -4b"-Verbindungen (ca. 10% in C_6D_6 , 10-mm-Probenrohr, $B_0 = 9.4$ T, 12.64 MHz) ließen sich mittels direkter Messung bereits nach 0.5 h anhand ihrer ¹⁰³Rh-Resonanzen detektieren, ohne daß der abzusuchende Bereich genau definiert werden mußte. Bekannte δ^{103} Rh-Werte sind mit INEPT³⁰ schon nach ca. 5 min zugänglich. Mit einem $1D_{-}^{1}H_{\{103}Rh\}$ -Experiment³⁷ konnte $(C_5H_5)Rh-\eta^4$ -4a gemessen werden.

Die δ^{103} Rh-Werte zeigen im Gegensatz zu den δ^{59} Co-Werten deutliche Unterschiede bei Bindung am π -Heterodienbzw. am π -Alkadien-System, wie aus einem Vergleich mit den δ^{103} Rh-Werten anderer (C₅H₅)Rh-Alkadien-Komplexe³⁴), sowie aus der Gegenüberstellung der isomeren (C₅H₅)Rh- η^4 -4b, -4b' und -4b" hervorgeht. Der ¹⁰³Rh-Kern am C=C-B-N-System ist um 600 ppm weniger abgeschirmt als am C=C-C=C-System. Beim Rh(I)-Komplex (acac)Rh- η^4 -4a scheint sich dieser Trend noch zu verstärken, da dessen ¹⁰³Rh-Resonanz gegenüber (acac)Rh-Alkadien- η^4 -Komplexen³⁸⁾ um ca. 1000 ppm zu höheren Frequenzen verschoben ist. Die δ^{103} Rh-Werte für die *exo*-isomeren (C₅H₅)Rh- η^4 -4b' und -4b" (-736.6; -758.0) ähneln dem δ^{103} Rh-Wert des entsprechenden 1-Oxa-Derivates (δ^{103} Rh - 804.0)¹¹.

Kopplungskonstanten

ⁿ $J({}^{13}CX)$ $(X = {}^{11}B, {}^{13}C, {}^{-29}Si, {}^{57}Fe, {}^{103}Rh)$: Die Kopplungskonstanten ${}^{1}J({}^{13}C^{13}C)$ in Alkadienen ändern sich bekanntlich ${}^{28,40)}$ bei der π -Komplexierung. So sind auch ${}^{1}J({}^{13}C^{4-11}B)$ (47 \pm 5 Hz) und ${}^{1}J({}^{13}C^{3-13}C^{4})$ von (OC)₃Fe- η^{4} -4a beträchtlich kleiner als im freien 4a (63.0 Hz). Auch ${}^{1}J({}^{13}C^{4-11}B)$ bei (OC)₃Fe- η^{4} -7a ist trotz verkürzten Bindungsabstands $r_{C^{4}-B}$ kleiner als bei 7c (70 Hz) [${}^{1}J({}^{15}N^{11}B)$ siehe unten]. Dies kann auf die leichtere Polarisierbarkeit des Bor-Atoms im Vergleich zum Kohlenstoff-Atom zurückzuführen sein.

Kopplungskonstanten $J({}^{13}C{}^{13}C)$ [Hz] in (OC)₃Fe- η^4 -4a

Die Kopplungskonstanten ${}^{1}J({}^{29}Si^{13}C_{Me})$ in den LM- η^{4} -**4**abzw. -**7a**- und LM- η^{4} -**4b**-Komplexen unterscheiden sich bis zu 16 Hz. Der größere Wert für ${}^{1}J({}^{29}Si^{13}C_{Me})$ muß der metallnahen *Si*-Methyl-Gruppe (*endo*) zugeordnet werden. Bestätigt wird diese Aussage durch die Röntgenstrukturanalyse⁶⁾ von (C₅H₅)Co- η^{4} -**7a**. Die großen Unterschiede in den ${}^{1}J({}^{29}Si^{13}C_{Me})$ -Werten passen zu der verzerrt tetraedrischen Umgebung des Silicium-Atoms. Für die LM- η^{4} -**4b'**-Komplexe sind die Unterschiede mit ca. 3-4 Hz für die ${}^{1}J({}^{29}Si^{13}C_{Me})$ -Werte erwartungsgemäß geringer. Die ${}^{1}J({}^{29}Si^{13}C^{3})$ -Werte sind in den π -Komplexen unverändert oder um ca. 2-3 Hz größer als in den freien Liganden. Eine Beziehung zu Änderungen des Si $-C^3$ -Abstandes⁶⁾ läßt sich nicht feststellen.

Die Kopplungskonstanten ${}^{1}J({}^{57}Fe^{13}C)$ in L_nFe-Alkadien- η^{4} -Komplexen sind bekanntlich klein 41 . Der ${}^{1}J({}^{57}Fe^{13}C^{3})$ -Wert von 3.9 Hz in (OC)₃Fe- η^{4} -4a liegt somit im Erwartungsbereich. Auch die ${}^{1}J({}^{57}Fe^{13}C_{C \equiv O})$ -Werte stimmen mit Daten für bekannte (OC)₃Fe-Alkadien- η^{4} -Komplexe nahezu überein 41 .

Die Werte für ${}^{1}J({}^{103}\text{Rh}{}^{13}\text{C}{}^{34})$ liegen im bekannten Bereich für Rh- η^{4} -Alkadien-Komplexe ${}^{34a_{1}}$. Dabei gilt stets, daß in den η^{4} -**4b**- und den η^{4} -**4b'**-Komplexen ${}^{1}J({}^{103}\text{Rh}{}^{13}\text{C}{}^{3})$ größer als ${}^{1}J({}^{103}\text{Rh}{}^{C_{3}})$ ist. Die Werte für ${}^{1}J({}^{103}\text{Rh}{}^{13}\text{C}{}_{C_{3}\text{H}_{3}})$ sind in (C₅H₅)Rh- η^{4} -**4a** (5.9 Hz) und -**4b** (5.7 Hz) nur geringfügig größer als in den *exo*-Isomeren (C₅H₅)Rh- η^{4} -**4b'** und -**4b''** (5.1 Hz). Eine Reihe von long-range-Kopplungen ${}^{n}J({}^{103}\text{Rh}{}^{13}\text{C})$ (n > 1) mit 0.5–1.3 Hz wird zusätzlich beobachtet.

 ${}^{I}J({}^{I5}N{}^{I}H), {}^{I}J({}^{I5}N{}^{II}B)$: Die Werte ${}^{I}J({}^{I5}N{}^{1}H)$ in den LM- η^{4} -7c- und -7d-Komplexen ändern sich kaum im Vergleich mit den freien Liganden. Dies gilt auch für die ${}^{I}J({}^{I3}C{}^{I}H)$ -Werte der terminalen Kohlenwasserstoff-Gruppen in Alkadien- η^{4} -Komplexen ${}^{42)}$. Die Art der M-N-Wechselwirkung ist somit deutlich zu unterscheiden von den Änderungen der Bindungsverhältnisse am Stickstoff-Atom bei der Dimerisierung von Aminoboranen, die wie bei den π -Komplexen formal zur Koordinationszahl = 4 für die Bor- und Stickstoff-Atome führt (Me₂B-NH₂: ${}^{I}J({}^{15}N{}^{1}H) = 80.0$ Hz; [Me₂B-NH₂]₂: ${}^{I}J({}^{15}N{}^{1}H) = 72.0$ Hz⁴³).

Die Größenordnung für ${}^{1}J({}^{15}N{}^{11}B)$ läßt sich abschätzen, wenn die Linienbreite (verursacht durch skalare ${}^{15}N{}^{11}B{}$ -Wechselwirkungen) der ${}^{15}N{}^{1}H{}$ -Resonanzen und die Relaxationszeit des ${}^{11}B{}$ -Kerns bekannt sind. Bei dominanter Quadrupolrelaxation folgt diese aus der Linienbreite $h_{1/2}({}^{11}B)$. Der Wert $h_{1/2}({}^{15}N)$ wurde für (OC)₃Fe- η^4 -7d und 7d aus dem ${}^{15}N{}$ -NMR-Spektrum unter der Annahme bestimmt, daß die Linienbreite ohne skalare ${}^{15}N{}^{-11}B{}$ -Kopplung ca. 1 Hz beträgt.

Für die Verbreiterung Δv_B der ¹⁵N-Resonanz ergibt sich aufgrund der skalaren ¹⁵N-¹¹B-Kopplung:

$$\Delta v_{\mathbf{B}} = 5 \pi / h_{1/2} ({}^{11}\mathbf{B}) \cdot [{}^{1}J ({}^{15}\mathbf{N}{}^{11}\mathbf{B})]^2$$

Man erhält daraus ${}^{1}J({}^{15}N^{11}B) \leq 11$ Hz für das freie 7d (ähnliche Werte zwischen 10 und 12 Hz lassen sich für 7a⁵) und 7c bestimmen) und ≥ 15 Hz für (OC)₃Fe- η^{4} -7d. Die Größe von $|{}^{1}J({}^{15}N^{11}B)|$ nimmt somit bei der π -Komplexierung der C=C-B-N-Gruppierung trotz verlängerter B-N-Bindung zu [in den Alkadien- η^{4} -Komplexen ist ${}^{1}J({}^{13}C^{13}C)$ kleiner als beim freien Alkadien]. Somit besteht nur eine formale Analogie zwischen Alkadien- und Heterodien-System. – Angemerkt sei, daß der Substituenteneinfluß auf ${}^{1}J({}^{15}N^{11}B)$ in Aminoboranen bisher kaum untersucht wurde⁴⁴). Die Ergebnisse der Messung von ${}^{1}J({}^{15}N^{11}B)$ in Amin-Boran-Addukten⁴⁵⁾ sind nicht auf die vorliegende Problematik zu übertragen.

 ${}^{n}J({}^{103}Rh^{29}Si)$: Die Kopplungskonstanten ${}^{2}J({}^{103}Rh^{29}Si)$ betragen 1.2–2.3 Hz und sind aus den ${}^{29}Si$ -NMR-Spektren leicht zu entnehmen. Besonders bei Gemischen dienen die Werte als sicheres Indiz, welches ²⁹Si-Resonanzsignal den π -Komplexen zuzuordnen ist. Die Größe von ² $J(^{103}$ Rh²⁹Si), die den long-range-Kopplungen ⁿ $J(^{103}$ Rh¹³C) (n > 1) entspricht, weist auf das Fehlen bindender Rh-Si-Wechselwirkungen hin.

Experimenteller Teil

Sämtliche Reaktionen und Messungen sind bei striktem Luftund Feuchtigkeitsausschluß unter Argon durchgeführt worden. Elementgehalte (C, H, B, Co, Cr, Fe, Ir, Mo, N, Ni, Rh, Ru): Dornis und Kolbe, Mülheim an der Ruhr.

Geräte: DSC: DuPont 1090. - IR: Perkin-Elmer 297. -Raman^{46a)}: Coderg LRT-800. – MS^{46b)}: Finnigan MAT CH 5 (flüssige und feste Proben), CEC-103 (Gasanalysen). - ¹H-NMR^{46c}): Bruker WP 80 und AM 200, TMS. – ¹¹B-NMR^{46c1}: Varian XL 100-15, Bruker AC 200; $\delta^{11}B = 0 [(C_2H_5)_2O - BF_3, extern]. - {}^{13}C$ -NMR: Bruker AC 200 (50.2 MHz) und WM 300 (75.4 MHz), TMS, extern. - ¹⁴N-NMR: Bruker WP 200 (14.5 MHz), CH₃NO₂ rein, extern. - ¹⁵N-NMR (20.3 MHz): Bruker AC 200 (INEPT ³⁰), CH₃NO₂ rein, extern. - ¹⁷O-NMR (mit ¹⁷O-angereicherten Verbindungen)^{46c)}: Bruker WH 400 (50.8 MHz), H₂O, extern. -²⁹Si-NMR (INEPT ³⁰): Bruker WP 200, AC 200 (39.8 MHz), AC 300 (59.6 MHz), TMS, extern. - ⁵⁹Co-NMR (47.2 MHz): Bruker WP 200; Co(CN) $_{6}^{3-}$, $\Xi_{59_{Co}} = 23.727118$ MHz. - ¹⁰³Rh-NMR (aus ¹H¹⁰³Rh}-Experimenten): Modifiziertes Gerät Jeol FX 90 Q; Bruker AM 400 [INEPT^{30]} und direkt (spektrales Fenster 40 kHz = 3200 ppm, Pulswinkel ca. 25°, Acquisitionszeit 0.6 s); 103 Rh{ $^{(1}$ H}], $\Xi_{103_{Rh}} = 3.16$ MHz. – Belichtungsapparatur⁴⁷): Hg-Mittel-Hochdrucklampe HPK 125 WIL, Philips. - HPLC⁴⁸⁾: Kipp + Zonen LC 771, S = 150 mm, Innendurchmesser 4.5 mm; Kieselgel (Nucleosil-100-3) mit C_7 -KW als mobile Phase; RI-Detektion.

Edukte: Na-**3a**, **4a** – **4f**, **h**, **j**, **5a**, **b**, (OC)₃Cr- η^{6} -**5a**, **7c**, **d**¹⁾, (CH₃CN)₃Cr(CO)₃¹¹⁾, (CH₃CN)₃Mo(CO)₃⁴⁹⁾, C₅H₅Co(C₂H₄)₂⁵⁰⁾, C₁₂H₁₈Ni⁵¹⁾, [(C₂H₄)RhCl]₂⁵²⁾, [(C₂H₄)₂IrCl]₂⁵³¹ und C₃H₇O₂Rh-(C₂H₄)₂⁵⁴⁾ stellte man nach Literaturangaben her. – Fe(CO)₅, Fe₂(CO)₉, Ru₃(CO)₁₂, C₅H₅Rh(C₂H₄)₂⁵⁵⁾ und Fe(CO)₃C₄H₆ (Ventron) wurden bezogen. – Sämtliche Lösungsmittel (Pentan, Hexan, Heptan, Toluol, Mesitylen, Diethylether, Tetrahydrofuran, Dioxan) und Flüssigkeiten machte man vor Gebrauch luft- und wasserfrei und bewahrte sie unter Argon als Schutzgas auf.

Ligand-Übergangsmetall-ŋ⁴-Komplexe mit 3-Methylgruppe Komplexverbindungen des Chroms und Molybdäns

Tetracarbonyl(η^4 -4,5-diethyl-2,5-dihydro-1,2,2,3-tetramethyl-1H-1,2,5-azasilaborol)chrom [(OC)₄Cr- η^4 -4a]: Beim Erhitzen (1 h) der orangeroten Suspension von 2.8 g, (10.8 mmol) (CH₃CN)₃Cr(CO)₃ und 2.8 g (14.3 mmol) 4a in 80 ml Dioxan auf 60 – 70 °C erhält man ein gelbbraunes Gemisch, aus dem nach Abfiltrieren von 0.3 g braunschwarzem Niederschlag (elementares Chrom?) alle leichtflüchtigen Verbindungen bei 14 bzw. 0.001 Torr entfernt werden. Die Sublimation (50–60 °C/0.001 Torr) liefert 2.0 g (52%) orangegelbes, wachsartiges (OC)₄Cr- η^4 -4a. – IR (Nujol): $\tilde{v} = 2010$ cm⁻¹, 1945, 1920, 1910 (CO). – MS- und NMR-Daten vgl. Tab. 1, 3 und 5.

 $\begin{array}{c} C_{14}H_{22}BCrNO_4Si~(359.2)\\ Ber. C~46.83~H~6.18~B~3.01~Cr~14.48~N~3.90~Si~7.82\\ Gef. C~46.73~H~6.21~B~3.15~Cr~14.41~N~3.90~Si~7.72\\ \end{array}$

Tetracarbonyl(η^{4} -4,5-diethyl-2,5-dihydro-1,2,2,3-tetramethyl-1H-1,2,5-azasilaborol)molybdän [(OC)₄Mo- η^{4} -4**a**]: 1.94 g (6.4 mmol) (CH₃CN)₃Mo(CO)₃ und 1.64 g (8.4 mmol) 4**a** erhitzt man in 100 ml

Übergangsmetall-π-Komplexe organosubstituierter 2,5-Dihydro-1,2,5-azasilaborole

Dioxan 2 h auf 80 °C. Von wenig schwarzem Ungelöstem wird abfiltriert, bei 12 Torr eingeengt und der Rückstand in 20 ml Pentan aufgenommen. Man filtriert von 1.04 g beigefarbener Festsubstanz ab und erhält nach Einengen des Filtrats beim Abkühlen (-78 °C) 0.90 g (34%) orangegelbes (OC)₄Mo-η⁴-4a, das sich bei Temp. > -20 °C langsam zersetzt. - IR (Nujol): $\tilde{v} = 2025$ cm⁻¹, 1985, 1950, 1935, 1910 (CO). - MS- und NMR-Daten vgl. Tab. 1, 3 und 5.

$C_{14}H_{22}BMoNO_4Si$ (403.2)										
Ber.	C 41.72	H 5.51	B 2.68	Mo 23.79	N 3.47	Si 6.97				
Gef.	C 41.90	H 5.62	B 2.71	Mo 23.52	N 3.57	Si 7.08				

Komplexverbindungen des Eisens

Tricarbonyl (η^4 -endo/exo-2,4,5-triethyl-2,5-dihydro-1,2,3-trimethyl-1H-1,2,5-azasilaborol) eisen [endo/exo-(OC)₃Fe- η^4 -4c]: Beim Belichten eines Gemischs von 1.97 g (9.4 mmol) 4c und 2.06 g (10.5 mmol) Fe(CO)₅ in 70 ml THF spalten sich bei 20 °C in 7 h 337 ml (80%) CO ab. Aus der dunkelroten Lösung entfernt man das THF (12 Torr) und erhält beim Sublimieren (50-65 °C/0.001 Torr) 2.48 g (75%) rotes Isomerengemisch von (OC)₃Fe- η^4 -4c [GC/MS: 33.8% endo-Et², 66.2% exo-Et²; vgl. Tab. 5] mit Schmp. 166 °C. – IR (Paraffin): $\tilde{v} = 2020 \text{ cm}^{-1}$, 1950, 1920 (CO). – MS- und NMR-Daten vgl. Tab. 1, 3 und 5.

 $C_{14}H_{24}BFeNO_3Si$ (349.1) Ber. C 48.16 H 6.92 B 3.09 Fc 15.99 N 4.01 Si 8.04 Gef. C 48.29 H 6.96 B 3.11 Fe 15.87 N 3.76 Si 8.26

Tricarbonyl(η^4 -3,4,5-triethyl-2,5-dihydro-1,2,2-trimethyl-1H-1,2,5-azasilaborol)eisen [(OC)₃Fe- η^4 -4e]: Beim Belichten von 0.52 g (2.48 mmol) 4e und 0.68 g (3.47 mmol) Fe(CO)₅ in 70 ml THF entweichen in 4 h 92.3 ml (83%) CO. Aus der rotbraunen Lösung entfernt man THF bei 12 Torr und erhält beim Sublimieren bei 55-70°C/0.001 Torr 0.65 g (75%) rotbraunes (OC)₃Fe- η^4 -4e mit Schmp. 195°C. – IR (Paraffin): $\tilde{v} = 2020$ cm⁻¹, 1955, 1925 (CO). – MS- und NMR-Daten vgl. Tab. 1, 3 und 5.

 $C_{14}H_{24}BFeNO_3Si$ (349.1) Ber. C 48.16 H 6.92 B 3.09 Fe 15.99 N 4.01 Si 8.04 Gef. C 48.15 H 6.96 B 3.03 Fe 16.00 N 3.88 Si 8.12

Tricarbonyl(η^4 -4,5-diethyl-2,5-dihydro-1,2,2-trimethyl-3-phenyl-1H-1,2,5-azasilaborol)eisen [(OC)₃Fe- η^4 -4**f**]: 1.98 g (7.7 mmol) 4**f** und 1.68 g (8.6 mmol) Fe(CO)₅ in 70 ml THF spalten beim Belichten in 6 h 256 ml (75%) CO ab. Aus der dunkelroten Lösung werden nach Entfernen des THF 1.85 g (61%) (OC)₃Fe- η^4 -4**f** (Schmp. 70 °C) bei 90–120 °C/0.001 Torr sublimiert. – IR (Paraffin): $\tilde{v} = 2030$ cm⁻¹, 1960, 1925 (CO), 1590 (C₆H₅). – MS- und NMR-Daten vgl. Tab. 1, 3 und 5.

 $\begin{array}{l} C_{18}H_{24}BFeNO_{3}Si~(397.1)\\ Ber.~C~54.44~H~6.09~B~2.72~Fe~14.06~N~3.52~Si~7.07\\ Gef.~C~54.58~H~5.95~B~2.79~Fe~14.21~N~3.50~Si~6.94\\ \end{array}$

Tricarbonyl[η^4 -5-(dimethylamino)-4-ethyl-2,5-dihydro-1,2,2,3-tetramethyl-1H-1,2,5-azasilaborol]eisen [(OC)₃Fe- η^4 -4j]: 1.18 g (5.6 mmol) 4j und 0.87 g (4.4 mmol) Fe(CO)₅ entwickeln beim 4stdg. Belichten in 150 ml THF zunächst zügig, dann deutlich langsamer 197 ml (100%) CO. Die gelbe Lösung wird dunkelrot. Nach Entfernen des Lösungsmittels bei 12 Torr sublimieren bei 30-50 °C/ 0.001 Torr 1.10 g (71%) dunkelrotes, wachsartiges (OC)₃Fe- η^4 -4j mit Schmp. 143 °C (nach Kristallisation aus Pentan). – IR (Hexan): $\tilde{\nu} = 2020 \text{ cm}^{-1}$, 1950, 1920 (CO). – MS- und NMR-Daten vgl. Tab. 1, 3 und 5.

 $\begin{array}{l} C_{13}H_{23}BFeN_2O_3Si~(350.1)\\ Ber. C~44.59~H~6.62~B~3.08~Fe~15.95~N~8.00~Si~8.02\\ Gef. C~44.72~H~6.38~B~3.25~Fe~16.15~N~8.05~Si~8.14\\ \end{array}$

Tricarbonyl(η⁴-4,5-diethyl-2,5-dihydro-2,2,3-trimethyl-1-phenyl-1H-1,2,5-azasilaborol)eisen [(OC)₃Fe-η⁴-**5a**]: 0.70 g (1.92 mmol) Fe₂(CO)₉ und 1.16 g (4.51 mmol) **5a** in 30 ml Mesitylen erhitzt man 15 h unter Rückfluß. Ab ca. 120°C werden 111 ml (86%) CO frei. Nach Filtrieren (von wenig Eisen) engt man bei 0.001 Torr (Badtemp. ≤ 60°C) ein, nimmt den hochviskosen Rückstand in wenig Pentan auf und kristallisiert bei ca. -50°C aus: 0.54 g (35%) dunkelrotes, 99.6proz. (GC, *n*-Heptan) (OC)₃Fe-η⁴-**5a** mit Schmp. 66°C. – IR (Paraffin): $\tilde{v} = 2020$ cm⁻¹, 1960, 1940 (CO). – MSund NMR-Daten vgl. Tab. 1, 3 und 5.

 $\begin{array}{c} C_{18}H_{24}BFeNO_{3}Si \ (397.2) \\ Ber. \ C \ 54.43 \ H \ 6.34 \ B \ 2.72 \ Fe \ 14.05 \ N \ 3.52 \ Si \ 7.07 \\ Gef. \ C \ 54.38 \ H \ 6.18 \ B \ 2.54 \ Fe \ 14.40 \ N \ 3.63 \ Si \ 7.02 \\ \end{array}$

 $Tricarbonyl(\eta^4-exo/endo-2,4,5-triethyl-2,5-dihydro-2,3-dimethyl-1H-1,2,5-azasilaborol)eisen [exo/endo-(OC)_3Fe-\eta^4-7c]$

a) Photochemisch: Beim 6stdg. Belichten von 0.83 g (4.2 mmol) 7c und 0.98 g (5.0 mmol) Fe(CO)₅ in 70 ml THF spalten sich bei Raumtemp. 153 ml (81%) CO ab. Man entfernt das Lösungsmittel bei 12 Torr und destilliert 1.11 g (79%) dunkelrotes Gemisch von (OC)₃Fe-η⁴-7c [GC (Heptan): 38.1% endo-Et², 61.9% exo-Et²] mit Sdp. 58 C/0.001 Torr ab. – IR (Paraffin): $\tilde{v} = 3395$ cm⁻¹ (NH), 2020, 1955 und 1945 (sh), 1925 (CO). – MS- und NMR-Daten vgl. Tab. 1, 3 und 5.

 $\begin{array}{l} C_{13}H_{22}BFeNO_{3}Si \ (335.1)\\ Ber. \ C \ 46.59 \ H \ 6.61 \ B \ 3.22 \ Fe \ 16.66 \ N \ 4.17 \ Si \ 8.38\\ Gef. \ C \ 46.56 \ H \ 6.65 \ B \ 3.26 \ Fe \ 16.70 \ N \ 4.04 \ Si \ 8.49 \end{array}$

b) Thermisch: Die Lösung von 0.94 g (4.8 mmol) 7c und 0.86 g (2.4 mmol) Fe₂(CO)₉ in 20 ml Mesitylen entwickelt bei 150–160 °C in ca. 6 h 161 ml (7.28 mmol) CO. Nach Filtrieren (wenig elementares Eisen) engt man bei 0.001 Torr ein und erhält 0.87 g (55%) dunkelrotes Gemisch von (OC)₃Fe- η^4 -7c (GC: 31.5% endo-Et², 68.5% exo-Et²) mit Sdp. 63–67 °C/0.001 Torr. – MS- und NMR-Daten vgl. Tab. 1, 3 und 5.

Tricarbonyl(η^{4} -4,5-diethyl-2,5-dihydro-2,3-dimethyl-exo/endo-2phenyl-1H-1,2,5-azasilaborol)eisen [exo/endo-(OC)₃Fe- η^{4} -7d] (photochemisch): 0.94 g (3.86 mmol) 7d und 0.77 g (3.93 mmol) Fe(CO)₅ in 70 ml THF entwickeln beim Belichten bei Raumtemp. in 4 h 121.4 ml (71%) CO. Man entfernt THF bei 14 Torr von der dunkelroten Lösung, verdünnt den Rückstand mit wenig Pentan und filtriert von Schwebstoffen ab. Langsames Abkühlen auf -78 °C liefert 0.38 g (26%) Gemisch von (OC)₃Fe- η^{4} -7d (GC: 7.6% endo-Ph², 92.4% exo-Ph²) mit Erweichungspunkt von ca. 75 °C. Nach Einengen der Mutterlauge erhält man 0.45 g (30%) Gemisch von (OC)₃Fe- η^{4} -7d (GC: 90.5% endo-Ph², 9.5% exo-Ph²) mit Sdp. 100-105 °C/0.001 Torr. – MS- und NMR-Daten vgl. Tab. 1, 3 und 5.

Thermische Isomerisierung: Die Lösung von $(OC)_3Fe-\eta^4-7d$ (GC: 90.5% endo-Ph², 9.5% exo-Ph²) wird 5 h in Mesitylen auf 150°C erhitzt. Es bildet sich ein Gemisch von 68.4% $(OC)_3Fe-\eta^4-7d$ -endo-Ph² und 31.6% $(OC)_3Fe-\eta^4-7d$ -exo-Ph² (GC).

Tricarbonyl(η^4 -4,5-diethyl-2,5-dihydro-2,3-dimethyl-exo-2-phenyl-1H-1,2,5-azasilaborol)eisen [exo-(OC)₃Fe- η^4 -7d] (thermisch): 1.10 g (4.52 mmol) 7d und 0.81 g (2.22 mmol) Fe₂(CO)₉ in 15 ml Mesitylen erhitzt man 10 h auf ca. 150 °C. 194 ml CO werden freigesetzt. Nach Abfiltrieren von wenig Schwebstoffen engt man bei 0.001 Torr ein, nimmt den hochviskosen Rückstand in Pentan auf und läßt langsam auf -80 °C abkühlen. Man erhält 1.54 g (91%) orangerotes (OC)₃Fe- η^4 -7d(exo-Ph²) mit Schmp. 79 °C. – IR (He-

A

xan): $\tilde{\nu}=3410$ cm $^{-1}$ (NH); 2040, 1975, 1935 (CO). – MS- und NMR-Daten vgl. Tab. 1, 3 und 5.

 $C_{17}H_{22}BFeNO_3Si$ (383.1)

Ber. C 53.29 H 5.78 B 2.82 Fe 14.57 N 3.65 Si 7.33

Gef. C 53.80 H 5.88 B 2.71 Fe 14.35 N 3.54 Si 7.25

Komplexverbindungen des Cobalts

 $(\eta^{5}$ -Cyclopentadienyl) $(\eta^{4}$ -4,5-diethyl-2,5-dihydro-2,2,3-trimethyl-1-phenyl-1H-1,2,5-azasilaborol)cobalt (C₅H₅Co- η^{4} -5a): 597 mg (3.3 mmol) C₅H₅Co(C₂H₄)₂ und 1.9 g (7.4 mmol) 5a in 5 ml Toluol entwickeln bei 50-60°C in 40 min 125 Nml (84%) C₂H₄ (MS). Die dunkelbraune Lösung wird dunkelgrün. Man filtriert von wenig ungelösten Verbindungen ab, engt bei 12 Torr ein und destilliert überschüssiges 5a mit Sdp. 50°C/0.001 Torr ab. Es verbleiben 1.1 g (87%) reines, dunkelgrünes, leicht viskoses C₅H₅Co- η^{4} -5a. – MSund NMR-Daten vgl. Tab. 1, 3 und 5.

C₂₀H₂₉BCoNSi (381.3)

Ber. C 63.00 H 7.66 B 2.83 Co 15.45 N 3.67 Si 7.37 Gef. C 63.21 H 7.79 B 2.70 Co 15.60 N 3.81 Si 7.01

 $[\eta^{5}-(Cyclopentadienyl)cobalt]-\mu-(4,5-diethyl-2,5-dihydro-2,2,3-trimethyl-1H-1,2,5-azasilaborol-1-yl-\eta^{6}-benzol)-chrom] [C₃H₃Co <math>\eta^{4}$ -5a- η^{6} -Cr(CO)₃]: 1.18 g (3.0 mmol) 5a- η^{6} -Cr(CO)₃ und 0.61 g (3.4 mmol) C₃H₃Co(C₂H₄)₂ in 20 ml Heptan entwickeln in 5 h bei 60 °C 106.5 Nml (79%) C₂H₄ (MS). Die rotbraune Lösung wird gelbgrün. Man filtriert von wenig Feststoff ab, engt bei 14 Torr auf ca. die Hälfte ein und erhält nach Umkristallisieren des Niederschlags aus heißem Heptan 1.04 g (67%) dunkelgrünes C₃H₃Co- η^{4} -5a- η^{6} -Cr(CO)₃ mit Schmp. 122 °C. – IR (Paraffin): $\tilde{v} = 1965$ cm⁻¹, 1955, 1880, 1865 (CO). – MS- und NMR-Daten vgl. Tab. 1, 3 und 5. – Röntgenstrukturanalyse vgl. Lit.⁶.

 $C_{23}H_{29}BCoCrNO_{3}Si$ (517.3)

Ber. C 53.41 H 5.64 B 2.09 Co 11.39 Cr 10.05 N 2.71 Si 5.43 Gef. C 53.36 H 5.62 B 2.16 Co 11.32 Cr 10.04 N 2.77 Si 5.58

 $(\eta^5$ -Cyclopentadienyl) (η^4 -5-ethoxy-4-ethyl-2,5-dihydro-1,2,2,3-tetramethyl-1H-1,2,5-azasilaborol) cobalt (C₅H₅Co- η^4 -**4h**): Beim Erwärmen der Lösung von 602.1 mg (3.34 mmol) C₅H₅Co(C₂H₄)₂ und 822.2 mg (3.89 mmol) **4h** in 8 ml Toluol auf 50-60°C entwickeln sich in 2 h 127 ml (85%) C₂H₄. Nach Filtrieren und Einengen der dunkelgrünen Lösung bei 12 bzw. 0.001 Torr erhält man 0.90 g (80%) dickflüssiges, dunkelgrünes, extrem luftempfindliches C₅H₅Co- η^4 -**4h**. – MS- und NMR-Daten vgl. Tab. 1, 3 und 5.

C₁₅H₂₇BCoNOSi (335.2) Ber. C 53.76 H 8.11 Co 17.57 Gef. C 53.85 H 8.04 Co 17.64

 $(\eta^{5}-Cyclopentadienyl)[\eta^{4}-5-(dimethylamino,-4-ethyl-2,5-dihy$ $dro-1,2,2,3-tetramethyl-1H-1,2,5-azasilaborol)cobalt (C₅H₅Co-\eta⁴-$ **4j**): Die rotbraune Lösung von 0.73 g (3.5 mmol)**4j** $und 0.59 g (3.3 mmol) C₅H₅Co(C₂H₄)₂ in 15 ml Toluol entwickelt bei 50-80 °C in 2.5 h 100.1 ml (68%) C₂H₄. Nach Abfiltrieren der dunkelgrünen Lösung von wenig Schwebstoffen engt man bei 12 Torr ein und erhält beim Sublimieren (50-60 °C/0.001 Torr) 0.92 g (84%) dunkelgrünes, wachsartiges C₅H₅Co-<math>\eta^{4}$ -**4j**. – MS- und NMR-Daten vgl. Tab. 1, 3 und 5.

 $C_{15}H_{28}BCoN_2Si$ (334.2)

Ber. C 53.90 H 8.44 B 3.23 Co 17.63 N 8.38 Si 8.40 Gef. C 53.96 H 8.34 B 3.24 Co 17.53 N 8.40 Si 8.36

 $(\eta^{5}$ -Cyclopentadienyl) (η^{4} -exo/endo-2,4,5-triethyl-2,5-dihydro-2,3dimethyl-1H-1,2,5-azasilaborol) cobalt (exo/endo-C₅H₅Co- η^{4} -7c): 0.86 g (4.4 mmol) 7c und 0.78 g (4.3 mmol) C₅H₅Co(C₂H₄)₂ in 15 ml Toluol entwickeln bei 55 – 75 °C nach 4 h 139 ml (72%) C₂H₄. Nach Abfiltrieren von wenig Schwebstoffen engt man bei 20 °C/0.001 Torr ein und erhält nach Destillation 1.09 g (79%) öliges Gemisch von $exo/endo-C_5H_5Co-\eta^4-7c$ [GC (%): 29.1 endo-Et²; 70.9 exo-Et²] mit Sdp. 82-85 °C/0.001 Torr. - IR (Paraffin): $\tilde{v} = 3400$ cm⁻¹, 3370 (NH). - MS- und NMR-Daten vgl. Tab. 1, 3 und 5.

 $\begin{array}{c} C_{15}H_{27}BCoNSi \ (319.2) \\ Ber. \ C \ 56.44 \ H \ 8.52 \ B \ 3.38 \ Co \ 18.46 \ N \ 4.38 \ Si \ 8.79 \\ Gef. \ C \ 56.36 \ H \ 8.61 \ B \ 3.30 \ Co \ 18.69 \ N \ 4.31 \ Si \ 8.71 \end{array}$

 $(\eta^{5}$ -Cyclopentadienyl) $(\eta^{4}$ -4,5-diethyl-2,5-dihydro-2,3-dimethylexo-2-phenyl-1H-1,2,5-azasilaborol)cobalt (exo-C₅H₅Co- η^{4} -7d): Beim Erwärmen des rotbraunen Gemischs aus 0.58 g (2.39 mmol) 7d und 0.43 g (2.39 mmol) C₅H₅Co(C₂H₄)₂ in 15 ml Toluol auf 60-85°C werden in 40 min 66 ml (62%) C₂H₄ (MS) frei. Man erhält eine dunkelgrüne Lösung, die bei 0.001 Torr eingeengt wird. Man nimmt in Heptan auf und gewinnt nach langsamem Abkühlen auf -78°C dunkelgrünes, kristallines exo-C₅H₅Co- η^{4} -7d mit Schmp. 112°C. – IR (THF): $\tilde{\nu} = 3330$ cm⁻¹ (NH). – MS- und NMR-Daten vgl. Tab. 1, 3 und 5. – Röntgenstrukturanalyse vgl. Lit.⁶.

 $C_{19}H_{27}BCoNSi$ (367.3) Ber. C 62.13 H 7.41 B 2.94 Co 16.04 N 3.81 Si 7.64 Gef. C 62.50 H 7.36 B 2.90 Co 16.08 N 3.90 Si 7.23

Komplexverbindung des Nickels

Bis (η^4 -4,5-diethyl-2,5-dihydro-1,2,2,3-tetramethyl-1H-1,2,5-azasilaborol)nickel [Ni(η^4 -4a)₂]: Herstellung und Röntgenstrukturanalyse vgl. Lit.⁷⁾ – MS- und NMR-Daten s. Tab. 1, 3 und 5.

Komplexverbindung des Rutheniums

Tricarbonyl(η^{4} -4,5-diethyl-2,5-dihydro-1,2,2,3-tetramethyl-1H-1,2,5-azasilaborol)ruthenium [(OC)₃Ru- η^{4} -4a]: 0.82 g (1.28 mmol) Ru₃(CO)₁₂ und 0.86 g (4.41 mmol) 4a in 15 ml Mesitylen entwickeln bei 150-160°C in 5.5 h 56.7 ml (66%) CO. Nach Abfiltrieren von 0.16 g Ru₃(CO)₁₂ (Schmp.) engt man bei 0.001 Torr ein und sublimiert bei 30-50°C/0.001 Torr 0.70 g (59%) gelbes (OC)₃Ru- η^{4} -4a mit Schmp. 174°C. – IR (Paraffin): $\tilde{\nu} = 2040$ cm⁻¹, 1990 mit Schulter bei 1950, 1930 (CO). – MS- und NMR-Daten vgl. Tab. 1, 3 und 5.

 $\begin{array}{l} C_{13}H_{22}BNO_{3}RuSi \ (380.3)\\ Ber.\ C\ 41.05\ H\ 5.84\ B\ 2.84\ N\ 3.68\ Ru\ 26.58\ Si\ 7.39\\ Gef.\ C\ 40.97\ H\ 5.74\ B\ 2.85\ N\ 3.68\ Ru\ 26.48\ Si\ 7.22\\ \end{array}$

Komplexverbindungen des Rhodiums

Bis[μ -(η^4 -4,5-diethyl-2,5-dihydro-2,2,3-trimethyl-1H-1,2,5-azasilaborol-1-yl) Jbis(ethen)dirhodium] [(C₂H₄Rh- $\eta^1\eta^4$ -3**a**)₂]: Beim Zutropfen einer Lösung von 4.13 g (20.3 mmol) Na-3**a** in 25 ml Diethylether zur Lösung von 4.01 g (10.3 mmol) [(C₂H₄)₂RhCl]₂ in 25 ml Ether werden in 40 min 330 ml C₂H₄ frei. Man vervollständigt die Gasabspaltung (450 ml C₂H₄) durch Erhitzen unter Rückfluß (30 min). Nach Abfiltrieren von 1.3 g verunreinigtem NaCl und teilweisem Einengen kristallisiert das Produkt bei -40 bis -80°C aus. Die Kristalle wäscht man mit kaltem Ether und erhält 1.74 g (27%) dunkelrotes (C₂H₄Rh- η^1 , η^4 -3**a**)₂ mit Schmp. 158°C (ab ca. 140°C Schwarzfärbung). – MS- und NMR-Daten vgl. Tab. 1, 3 und 5. – Röntgenstrukturanalyse vgl. Lit.⁶.

 $\begin{array}{c} C_{22}H_{46}B_2N_2Rh_2Si_2 \ (622.2)\\ \text{Ber. C } 42.46 \ H \ 7.46 \ B \ 3.47 \ N \ 4.50 \ Rh \ 33.08 \ Si \ 9.03\\ \text{Gef. C } 42.50 \ H \ 7.40 \ B \ 3.74 \ N \ 4.58 \ Rh \ 33.80 \ Si \ 9.06 \end{array}$

Nach weiterem Einengen der verunreinigten Mutterlaugen und Abkühlen bis -78 °C isoliert man 1.59 g dunkelbraune Kristalle mit Schmp. 139–140 °C. – 'H-NMR-Daten vgl. Tab. 3.

Di- μ -chlorobis(η^4 -4,5-diethyl-2,5-dihydro-1,2,2,3-tetramethyl-1H-1,2,5-azasilaborol)dirhodium [(ClRh- η^4 -4a)₂]: Beim Erwärmen von 0.74 g (1.90 mmol) [(C₂H₄)₂RhCl]₂ und 0.93 g (4.76 mmol) 4a in 15 ml Toluol auf ca. 50 °C werden in 50 min 129 ml (76%) C₂H₄ freigesetzt. Die dunkelrote Lösung wird filtriert und bei 0.001 Torr eingeengt. Es wird in wenig Pentan aufgenommen. Nach Abkühlen auf ca. -80 °C kristallisieren 1.01 g (79.5%) orangerotes (ClRh- η^4 -4a)₂ mit Schmp. 112 °C. – MS- und NMR-Daten vgl. Tab. 1, 3 und 5.

 $\begin{array}{l} C_{20}H_{44}B_2Cl_2N_2Rh_2Si_2 \ (667.1)\\ Ber. \ C \ 36.01 \ H \ 6.65 \ B \ 3.24 \ N \ 4.20 \ Rh \ 30.85 \ Si \ 8.42\\ Gef. \ C \ 36.21 \ H \ 6.61 \ B \ 3.30 \ N \ 4.24 \ Rh \ 30.97 \ Si \ 8.26 \end{array}$

 $(\eta^{5}-Cyclopentadienyl)(\eta^{4}-4,5-diethyl-2,5-dihydro-1,2,2,3-tetrame$ $thyl-1H-1,2,5-azasilaborol)rhodium (C₅H₅Rh-\eta⁴-4a): Die gelbe Lö$ sung von 0.66 g (2.95 mmol) C₅H₅Rh(C₂H₄)₂ und 0.84 g (4.33 mmol)4a in 10 ml Toluol wird zum Sieden erhitzt. In 12 h spalten sich114 ml (86%) C₂H₄ ab. Nach Filtrieren der dunkelroten Lösungengt man bei 12 Torr ein und erhält nach Sublimation (40-50°C/0.001 Torr) 0.85 g (79%) dunkelrotes, wachsartiges C₅H₅Rh-η⁴-4a. – MS- und NMR-Daten vgl. Tab. 1, 3 und 5.

C₁₅H₂₇BNRhSi (363.2) Ber. C 49.61 H 7.49 B 2.97 N 3.85 Rh 28.33 Si 7.74 Gef. C 49.54 H 7.45 B 2.90 N 3.74 Rh 28.20 Si 7.95

 $(Acetylacetonato)(\eta^{4}-4,5-diethyl-2,5-dihydro-1,2,2,3-tetramethyl-1H-1,2,5-azasilaborol)rhodium (C_{5}H_{7}O_{2}Rh-\eta^{4}-4a): Die gelbe Lö$ $sung von 0.52 g (2.01 mmol) C_{5}H_{7}O_{2}Rh(C_{2}H_{4})_{2} und 0.57 (2.92 mmol)$ 4a in 10 ml Toluol entwickelt beim Erhitzen unter Rückfluß in 2.5 h $77 ml (86%) C_{2}H_{4}. Man erhält eine dunkelrote Lösung, aus der$ nach Entfernen des Toluols (12 Torr) 0.72 g (90%) orangegelbes $C_{5}H_{7}O_{2}Rh-\eta^{4}-4a mit Schmp. 92 °C durch Sublimation (60-80 °C/$ 0.001 Torr) gewonnen werden. – MS- und NMR-Daten vgl. Tab.1, 3 und 5.

 $\begin{array}{l} C_{15}H_{29}BNO_2RhSi~(397.2)\\ Ber.~C~45.37~H~7.35~B~2.72~N~3.52~Rh~25.91~Si~7.07\\ Gef.~C~45.50~H~7.26~B~2.63~N~3.16~Rh~25.13~Si~7.15\\ \end{array}$

Komplexverbindung des Iridiums

 $(\eta^4 - 4, 5$ -Diethyl-2,5-dihydro-1,2,2,3-tetramethyl-1H-1,2,5-azasilaborol) $(\eta^2$ -ethen)iridium-chlorid $[C_2H_4(Cl)Ir-\eta^4 - 4a]$: Man erwärmt die Lösung von 0.57 g (1.0 mmol) $[\{C_2H_4\}_2IrCl]_2$ und 0.5 g (2.56 mmol) 4a in 10 ml Toluol auf 60 – 100 °C und erhält 11 ml C_2H_4 . Nach Entfernen des Toluols bei 0.001 Torr wird der Rückstand in 3 ml $(C_2H_5)_2O$ aufgenommen. Nach Filtrieren erhält man beim Abkühlen auf – 50 °C Kristalle, die mit kaltem Ether gewaschen und i. Vak. getrocknet werden: 0.39 g (42%) dunkelrotes $C_2H_4(Cl)Ir-\eta^4$ -4a mit Schmp. 112 °C. – MS- und NMR-Daten vgl. Tab. 1, 3 und 5. – Röntgenstrukturanalyse vgl. Lit.⁶.

$C_{12}H_{26}BClIrNSi$ (450.9)	Ber.	C 32.65	H 6.15	Cl 7.60	Ir 41.05
	Gef.	C 31.96	H 5.81	Cl 7.87	Ir 42.63

Ligand-Übergangsmetall-ŋ⁴-Komplexe mit 3-Isopropenyl-Gruppe Komplexverbindungen des Eisens

Tricarbonyl (η^{4} -4,5-diethyl-2,5-dihydro-3-isopropenyl-1,2,2-trimethyl-1H-1,2,5-azasilaborol) eisen-Isomere [(OC)₃Fe- η^{4} -4b, 4b', 4b'']: Man erhitzt 3.86 g (10.6 mmol) Fe₂(CO)₉ und 5.73 g (25.9 mmol) 4b in 50 ml Mesitylen 2 h auf 140–160°C. Dann sind 690 ml (30.8 mmol) CO freigesetzt. Man filtriert von wenig elementarem Eisen ab, engt bei 0.001 Torr ein und erhält beim Sublimieren bei 60°C/ 0.001 Torr 5.1 g (67%) orangerotes, wachsartiges Gemisch (HPLC; k'-Wert) aus 74% (OC)₃Fe- η^{4} -4b' (0.49), 6% (OC)₃Fe- η^{4} -4b'' (0.81) und 20% (OC)₃Fe- η^{4} -4b (0.94). Nach Abtrennen (präparative HPLC) des orangeroten (OC)₃Fe- η^{4} -4b erhält man gelbes (OC)₃Fe- η^{4} -4b', das sich in Heptan im Tageslicht bei Raumtemp. langsam in orangerotes (OC)₃Fe- η^{4} -4b umlagert. – IR (Nujol): $\tilde{v} = 2130$ cm^{-1} , 1975, 1960 (CO). – MS- und NMR-Daten vgl. Tab. 2, 4 und 7.

 $\begin{array}{l} C_{13}H_{24}BFeNO_{3}Si \ (361.1)\\ Ber. C \ 49.90 \ H \ 6.70 \ B \ 2.99 \ Fe \ 15.45 \ N \ 3.88 \ Si \ 7.78\\ Gef. C \ 50.01 \ H \ 6.81 \ B \ 2.90 \ Fe \ 15.51 \ N \ 3.85 \ Si \ 7.70 \end{array}$

 $(OC)_{3}Fe-\eta^{4}-4b, 4b', 4b'' aus 4b mit <math>(OC)_{3}FeC_{4}H_{6}$ durch Erhitzen: 1.39 g (7.2 mmol) $(OC)_{3}Fe(\eta^{4}-C_{4}H_{6})$ und 1.96 g (8.9 mmol) 4b erhitzt man in 15 ml Mesitylen 20 h auf ca. 160°C. Die braungelbe Lösung wird dunkelrot. Nach Abfiltrieren von wenig Schwebstoffen engt man bei 0.001 Torr ein und erhält beim Sublimieren bei 50-60°C/ 0.001 Torr 1.08 g (49%) rotes, wachsartiges Gemisch (HPLC, ²⁹Si-NMR) von 66% $(OC)_{3}Fe-\eta^{4}-4b', 17\% (OC)_{3}Fe-\eta^{4}-4b''$ und 17% $(OC)_{3}Fe-\eta^{4}-4b. - MS-$ und NMR-Daten vgl. Tab. 2, 4 und 7.

Photochemische Isomerisierung von $(OC)_3Fe-\eta^4$ -**4b**, **4b'**, **4b''** in THF: Nach Belichten (7 h) einer THF-Lösung von (HPLC) 66% $(OC)_3Fe-\eta^4$ -**4b'**, 17% $(OC)_3Fe-\eta^4$ -**4b''** und 17% $(OC)_3Fe-\eta^4$ -**4b** erhält man ein Gemisch (HPLC) von 17% $(OC)_3Fe-\eta^4$ -**4b'**, 11% $(OC)_3Fe-\eta^4$ -**4b''** und 72% $(OC)_3Fe-\eta^4$ -**4b**.

 $(OC)_{3}Fe-\eta^{4}$ -**4b**, **4b**', **4b**'' aus **4b** und $Fe(CO)_{5}$ in THF durch Belichten: Die Lösung von 0.88 g (4.5 mmol) Fe(CO)_{5} und 1.17 g (5.3 mmol) **4b** in 120 ml THF entwickelt beim 12–13stdg. Belichten 197 ml (98%) CO. Nach Entfernen von THF (12 Torr) und überschüssigem **4b** (0.001 Torr) erhält man beim Sublimieren $(50-55^{\circ}C/0.001 \text{ Torr})$ 1.04 g (55%) rotes, wachsartiges Gemisch (HPLC) von 23% (OC)_{3}Fe-\eta^{4}-4b', 4% (OC)_{3}Fe-\eta^{4}-4b.

Thermische Isomerisierung von $(OC)_3Fe-\eta^4$ -**4b**, **4b'**, **4b'** in Mesitylen: Aus einer Lösung von (HPLC) 17% (OC)_3Fe-\eta^4-**4b'**, 11% (OC)_3Fe-\eta^4-**4b''** und 72% (OC)_3Fe-\eta^4-**4b** in Mesitylen erhält man nach 6.5 h bei ca. 160 °C eine Lösung (HPLC) von 63% (OC)_3Fe-\eta^4-**4b'**, 14% (OC)_3Fe-\eta^4-**4b''** und 23% (OC)_3Fe-\eta^4-**4b**.

Tricarbonyl(η^{4} -4,5-diethyl-2,5-dihydro-3-isopropenyl-2,2-dimethyl-1-phenyl-1H-1,2,5-azasilaborol)eisen-exo-Isomere [(OC)₃Fe- η^{4} -5b', (OC)₃Fe- η^{4} -5b'']: 2.24 g (6.16 mmol) Fe₂(CO)₉ und 3.57 g (13.2 mmol) 5b entwickeln in 60 ml Mesitylen bei 160°C in 4 h 547 ml CO (Fe-Spiegel). Nach Abfiltrieren von wenig Schwebstoffen engt man bei 0.001 Torr ein und destilliert 1.4 g (4.9 mmol) 5b mit Sdp. 65°C/0.001 Torr ab. Anschließend destillieren 2.59 g (50%) gelbbraunes, viskoses (OC)₃Fe- η^{4} -5b' [¹³C-NMR: mit ca. 5% (OC)₃Fe- η^{4} -5b''] mit Sdp. 105-115°C/0.001 Torr. – MS- und NMR-Daten vgl. Tab. 2, 4 und 7.

Komplexverbindungen des Rutheniums

Tricarbonyl(η^4 -4,5-diethyl-2,5-dihydro-3-isopropenyl-1,2,2-trimethyl-1H-1,2,5-azasilaborol)ruthenium-Isomere [(OC)₃Ru- η^4 -4b, 4b', 4b"]: Beim Erhitzen von 0.57 g (0.89 mmol) Ru₃(CO)₁₂ und 1.82 g (8.22 mmol) 4b in 15 ml Mesitylen auf 160 °C sind nach 3 h 59.2 ml (99%) CO freigesetzt. Nach Filtrieren und Einengen (0.001 Torr) lassen sich bei 55-65 °C/0.001 Torr 0.80 g (74%) gelbes, wachsartiges Gemisch (HPLC; k'-Wert) aus 84% (OC)₃Ru- η^4 -4b' (0.24), 3% (OC)₃Ru- η^4 -4b" (0.49) und 13% (OC)₃Ru- η^4 -4b (0.63) sublimieren. – IR (Nujol): $\tilde{v} = 2040$ cm⁻¹, 1980, 1945 (CO). – MS- und NMR-Daten vgl. Tab. 2, 4 und 7.

 $C_{15}H_{24}BNO_3RuSi$ (406.3)

Ber. C 44.35 H 5.96 B 2.66 N 3.47 Ru 24.88 Si 6.92 Gef. C 44.48 H 5.90 B 2.54 N 3.32 Ru 24.34 Si 6.71

Belichten der $(OC)_3Ru-\eta^4$ -**4b**-Isomere in THF: Ein gelbes Gemisch (ca. 1 g) aus (HPLC) 84% (OC)_3Ru-\eta^4-**4b'**, 3% (OC)_3Ru-\eta^4-

2071

4b" und 13% (OC)₃Ru-n⁴-4b in 120 ml THF wird 7 h bei Raumtemp. belichtet. Nach Entfernen des THF bei 12 Torr sublimiert man bei ca. 60°C/0.001 Torr orangefarbenes Gemisch aus (HPLC) 23% (OC)3Ru-η4-4b', 8% (OC)3Ru-η4-4b" und 69% (OC)3Ru-η4-4b

Komplexverbindungen des Cobalts

 η^{5} -(Cyclopentadienyl)(η^{4} -4,5-diethyl-2,5-dihydro-3-isopropenyl-1,2,2-trimethyl-1,2,5-azasilaborol)cobalt-Isomere (C₅H₅Co- η^4 -**4b**, 4b'): 1.25 g (7.0 mmol) $C_5H_5Co(C_2H_4)_2$ und 3.8 g (17 mmol) 4b entwickeln bei 20-40°C in ca. 1 h 266 ml (84%) C₂H₄. Nach Entfernen von überschüssigem 4b sublimiert man bei 50-60°C/0.001 Torr und erhält nach Aufnehmen in Pentan beim Abkühlen $(-78 \degree C)$ 1.5 g (62%) tiefdunkelrotes Gemisch (¹¹B-NMR) aus $C_5H_5Co-\eta^4-4b'$ und $C_5H_5Co-\eta^4-4b$ (ca. 9:1) sowie wenig (< 5%) $C_5H_5Co-\eta^4-4b''$ (Nachweis mit ¹³C- und ²⁹Si-NMR, vgl. Tab. 7); Schmp. 121°C (Zers.). - MS- und NMR-Daten vgl. Tab. 2, 4 und 7.

C₁₇H₂₉BCoNSi (345.3) Ber. C 59.14 H 8.46 B 3.13 Co 17.06 N 4.05 Si 8.14

Gef. C 59.06 H 8.39 B 3.22 Co 17.26 N 4.10 Si 8.16

Komplexverbindung des Nickels

Bis $(\eta^3 \eta^4 - 4, 5 - diethyl - 2, 5 - dihydro - 3 - isopropenyl - 1, 2, 2 - trimethyl - 1, 2, 2 - trimethyl - 2, 3 - dihydro - 3 - isopropenyl - 1, 2, 3 - trimethyl - 2, 5 - dihydro - 3 - isopropenyl - 1, 2, 2 - trimethyl - 2, 5 - dihydro - 3 - isopropenyl - 1, 2, 3 - trimethyl - 2, 5 - dihydro - 3 - isopropenyl - 1, 2, 3 - trimethyl - 2, 5 - dihydro - 3 - isopropenyl - 1, 2, 3 - trimethyl - 2, 5 - dihydro - 3 - isopropenyl - 1, 2, 3 - trimethyl - 3, 5 - dihydro - 3 - isopropenyl - 1, 2, 3 - trimethyl - 3, 5 - dihydro - 3 - isopropenyl - 1, 2, 3 - trimethyl - 3, 5 - dihydro - 3 - isopropenyl - 1, 2, 3 - trimethyl - 3, 5 - dihydro - 3 - isopropenyl - 1, 2, 3 - trimethyl - 3, 5 - dihydro - 3 - isopropenyl - 1, 3 - trimethyl - 3, 5 - dihydro - 3 - isopropenyl - 1, 3 - trimethyl - 3, 5 - dihydro - 3 - isopropenyl - 1, 3 - trimethyl - 3, 5 - dihydro - 3 - isopropenyl - 1, 3 - trimethyl - 3, 5 - dihydro - 3 - isopropenyl - 1, 3 - trimethyl - 3, 5 - dihydro - 3 - isopropenyl - 1, 3 - trimethyl - 3, 5 - dihydro - 3 - isopropenyl - 1, 3 - trimethyl - 3, 5 - dihydro - 3 - isopropenyl - 1, 3 - trimethyl - 3, 5 - dihydro - 3 - isopropenyl - 1, 3 - trimethyl - 3, 5 - dihydro - 3 - isopropenyl - 1, 3 - trimethyl - 3, 5 - dihydro - 3 - isopropenyl - 1, 3 - trimethyl - 3, 5 - dihydro - 3, 5$ 1H-1,2,5-azasilaborol)dinickel [(Ni-η³η⁴-4bb')₂]: Vgl. Lit.⁸⁾. Dunkeirote Kristalle (65% Ausb.) mit Zers.-P. 134°C aus Pentan beim Abkühlen auf -78°C. - MS- und NMR-Daten vgl. Tab. 2, 4 und 7. – Röntgenstrukturanalyse vgl. Lit.⁶⁾.

 $C_{24}H_{48}B_2N_2Ni_2Si_2$ (559.9) Ber. C 51.49 H 8.64 B 3.86 N 5.00 Ni 20.97 Si 10.04 Gef. C 51.60 H 8.66 B 3.78 N 5.14 Ni 20.65 Si 9.94

Komplexverbindungen des Rhodiums

 $(\eta^{5}-Cyclopentadienyl)(\eta^{4}-4,5-diethyl-2,5-dihydro-3-isopropenyl-$ 1,2,2-trimethyl-1H-1,2,5-azasilaborol)rhodium-Isomere (C5H5Rh-η4-4b, 4b'): Die gelbe Lösung von 0.52 g (2.32 mmol) $C_5H_5Rh(C_2H_4)_2$ und 0.70 g (3.16 mmol) 4b in 10 ml Toluol entwickelt bei intensivem Erhitzen unter Rückfluß in 5.5 h 97 ml (94%) C₂H₄ und wird dunkelrot. Nach Filtrieren (wenig Niederschlag) und Einengen bei 0.001 Torr sublimieren 0.74 g (82%) wachsartiges, dunkelrotes Gemisch $({}^{11}B-NMR)$ aus ca. 88% C₅H₅Rh- η^{4} -4b' und ca. 12% C₅H₅Rh- η^{4} -4b. - MS- und NMR-Daten vgl. Tab. 2, 4 und 7.

 $C_{17}H_{29}BNRhSi$ (389.1) Ber. C 52.48 H 7.50 B 2.78 N 3.60 Rh 26.45 Si 7.22 Gef. C 52.60 H 7.61 B 2.62 N 3.48 Rh 26.61 Si 7.13

CAS-Registry-Nummern

CAS-Registry-Nummern Na-3a: 79483-03-7 / ($C_2H_4Rh-\eta^1\eta^4$ -3a)₂: 122332-06-3 / 4a: 79483-05-9 / (OC)_4Cr-\eta^4-4a: 122293-33-8 / $C_2H_4(Cl)Ir-\eta^4$ -4a: 122332-07-4 / (OC)_4Mo-\eta^4-4a: 122293-34-9 / Ni(\eta^4-4a)₂: 81923-59-3 / $C_3H_3Rh-\eta^4$ -4a: 122212-91-7 / $C_5H_7O_2Rh-\eta^4$ -4a: 122212-91-8 / (CIRh- η^4 -4a)₂: 122293-47-4 / (OC)_3Ru- η^4 -4a: 122293-44b: 81620-70-4 / $C_3H_5Co-\eta^4$ -4b: 122293-57-3 / (OC)_5Fe- η^4 -4b: 81628-77-5 / $C_4H_5Rh-\eta^4$ -4b': 122293-57-6 / (OC)_3Ru- η^4 -4b': 122293-53-2 / (OC)_5Fe- η^4 -4b': 81628-76-4 / $C_5H_5Co-\eta^4$ -4b': 122293-55-4 / (OC)_3Fe- η^4 -4b': 122293-50-9 / $C_5H_5Co-\eta^4$ -4b': 122293-55-4 / (OC)_3Fe- η^4 -4b': 122293-50-9 / $C_5H_5Co-\eta^4$ -4b': 122293-55-4 / (OC)_3Fe- η^4 -4b': 122293-35-0 / 4e: 122293-27-0 / (OC)_5Fe- η^4 -4e: 122293-36-1 / 4f: 122293-35-0 / 4e: 122293-27-0 / (OC)_5Fe- η^4 -4e: 122293-36-1 / 4f: 122293-38-3 / 5a: 88636-33-1 / $C_5H_5Co-\eta^4$ -4b: 122293-44-1 / (OC)_3Fe- η^4 -4f: 122293-38-3 / 5a: 88636-23-1 / $C_5H_5Co-\eta^6$ -5a: 122293-42-9 / 5a- η^6 -Cr(CO)_5: 12223-34-0 / 4j: 122293-38-3 / 5a: 88636-23-1 / $C_5H_5Co-\eta^6$ -5a: 122293-32-04-1 / (OC)_3Fe- η^4 -5a: 122293-34-4 / (OC)_3Fe- η^6 -5a' 122293-38-3 / 5a: 122293-39-4 / 5b: 122293-32-7 / (OC)_3Fe- η^4 -5b': 122293-38-3 / 5a: 122293-39-4 / 5b: 122293-32-7 / (OC)_3Fe- η^6 -5a' 122293-34-0 / 4j: 122293-38-3 / 5a: 122293-39-4 / 5b: 122293-32-7 / (OC)_3Fe- η^6 -5a' 122293-34-0 / 10C)_3Fe- η^4 -5b': 122293-34-0 / 3b: 122293-34-0 / 3b: 122293-34-1 / 3b+3b: 122293-34-1 / 3b+3b; 122293-34-1 / 3b+3b; 122293-34-0 / 3b: 122293-34-1 / 3b+3b; 122293-34-1 / 3b+3b; 122293-34-9 / 5a-\eta^6-5a' (CC)_3Fe- η^4 -5b': 122293-34-9 / 5b: 122293-32-9 / 32-7 / (OC)_3Fe- η^4 -5b': 122293-49-6 / (OC)_3Fe- η^4 -5b'': 122312-92-9 / 32-7 / (OC)_3Fe- η^4 -5b'': 122293-49-6 / (OC)_3Fe- η^4 -5b'': 122312-92-9 / 32-7 / (OC)_3Fe- η^4 -5b'': 122293-49-6 / (OC)_3Fe- η^4 -5b''' 122312-92-9 / 32-7 / (OC)_3Fe- η^4 -5b'': 122293-49-6 / (OC)_3Fe- η^4 -5b''': 122312-92-9 / 32-7 / (OC)_3Fe- η^4 -5b'': 122293-49-6 / (OC)_3Fe- η^4 -5b''': 122312-9

7d: 122332-03-0 / $(CH_3CN)_3Cr(CO)_3$: 16800-46-7 / $(CH_3CN)_3$ -Mo(CO)₃: 15038-48-9 / Fe(CO)₅: 13463-40-6 / Fe₂(CO)₉: 15321-C₄H₆): 12078-32-9

- ¹⁾ 90. Mitteilung über Borverbindungen; 89. Mitteilung: R. Köster,
- G. Seidel, B. Wrackmeyer, Chem. Ber. 122 (1989) 1825.
 ²⁾ G. Schmid, R. Köster, Organobor-Übergangsmetall-π-Komplexe, in Methoden der Organischen Chemie (Houben-Weyl-Müller), 4. Aufl., Bd. XIII/3c (R. Köster, Ed.), S. 74ff., 78ff., Thieme, Stuttgart 1984.
- ³⁾ R. Köster, G. Seidel, Angew. Chem. 93 (1981) 1009; Angew. Chem. Int. Ed. Engl. 20 (1981) 972.
 ⁴⁾ R. Köster, G. Seidel, Angew. Chem. 96 (1984) 146; Angew. Chem.
- Int. Ed. Engl. 23 (1984) 155.
- ⁵⁾ R. Köster, G. Seidel, R. Boese, B. Wrackmeyer, Chem. Ber. 120 (1987) 669; dort weitere Literaturangaben.
- ⁶⁾ R. Köster, G. Seidel, C. Krüger, G. Müller, A. Jiang, R. Boese, Chem. Ber. 122 (1989) 2075, nachstehend.
- ⁷⁾ R. Köster, G. Seidel, S. Amirkhalili, R. Boese, G. Schmid, Chem. Ber. 115 (1982) 738.
- ⁸⁾ R. Köster, G. Seidel, Angew. Chem. 94 (1982) 225; Angew. Chem.
- Int. Ed. Engl. 21 (1982) 207. 9) V. Prelog, H. Gerlach, Helv. Chim. Acta 47 (1964) 2288.
- ¹⁰⁾ H. Gerlach, J. A. Owtschimikow, V. Prelog, Helv. Chim Acta 47 (1964) 2294.
- ¹¹⁾ R. Köster, G. Seidel, R. Boese, B. Wrackmeyer, Chem. Ber. 121 (1988) 597.
- ¹²⁾ R. Köster, G. Seidel, R. Boese, B. Wrackmeyer, Chem. Ber. 121 (1988) 709
- ¹³⁾ R. Köster, G. Seidel, R. Boese, B. Wrackmeyer, Chem. Ber. 121 (1988) 1955
- ¹⁴⁾ R. Köster, G. Seidel, G. Müller, B. Wrackmeyer, Chem. Ber. 121 (1988) 1381.
- ¹⁵⁾ R. Köster, G. Seidel, R. Boese, B. Wrackmeyer, Chem. Ber. 121 (1988) 1941.
- ¹⁶⁾ J. L. Atwood, W. E. Hunter, Organometallics 2 (1983) 470.
- ¹⁷⁾ J. Mason (Ed.), Multinuclear NMR, Plenum Press, London 1987. ¹⁸⁾ B. Wrackmeyer, R. Köster, Analytik der Organobor-Verbindungen, in Methoden der Organischen Chemie (Houben-Weyl-Müller), 4. Aufl., Bd. XIII/3c, (R. Köster, Ed.), S. 587, 591, 593, Thieme, Stuttgart 1984.
- ¹⁹⁾ R. A. Hoffman, S. Forsen, Prog. Nucl. Magn. Reson. Spectrosc. 1 (1966) 15.
- ²⁰⁾ S. Macura, Y. Huang, D. Suter, R. R. Ernst, J. Magn. Reson. 43 (1988) 259.
- ²¹⁾ G. Schmid, D. Kampmann, W. Meyer, R. Boese, P. Paetzold, K. Delpy, *Chem. Ber.* **118** (1985) 2418.
- ²²⁾ B. Wrackmeyer, Annu. Rep. NMR Spectrosc. 20 (1988) 61-203.
 ²³⁾ ^{23a} N. F. Ramsey, Phys. Rev. 78 (1950) 699. ^{23b)} N. F. Ramsey,
- ²⁴⁾ M. M. Maricq, J. S. Waugh, J. L. Fletcher, M. J. McGlinchey, J. Am. Chem. Soc. 100 (1978) 6902.
- ²⁵⁾ (r⁻³)_{2p} ist der mittlere Abstand eines 2p-Elektrons vom Kern, vgl. C. J. Jameson, J. Mason in Lit.¹⁷⁾, S. 51-88.
 ²⁶⁾ H.-O. Kalinowski, S. Berger, S. Braun. ¹³C-NMR-Spektroskopie, Provident Science (Science). 25)
- Thieme, Stuttgart, 1984. ²⁷⁾ B. E. Mann, B. F. Taylor, ¹³C-NMR Data for Organometallic Compounds, Academic Press, London 1981.
- ²⁸⁾ R. Benn, A. Rufinska, J. Organomet. Chem. 323 (1987) 305.
- ²⁹⁾ L. Kruczynski, J. Takats, Inorg. Chem. 15 (1976) 3140.
- ²⁹ L. Kruczynski, J. 1akats, *Inorg. Chem.* **15** (1976) 5140. ³⁰ ^{30a)} G. A. Morris, R. Freeman, J. Am. Chem. Soc. **101** (1979) 760. $-^{30b)}$ G. A. Morris, J. Am. Chem. Soc. **102** (1980) 428. $-^{30c)}$ G. A. Morris, J. Magn. Reson. **41** (1980) 185. $-^{30d)}$ D. P. Burum, R. R. Ernst, J. Magn. Reson. **39** (1980) 163. ³¹⁾ ^{31a]} H. Werner, R. Prinz, E. Deckelmann, Chem. Ber. **102** (1969) 95. $-^{31b)}$ K. Delpy, D. Schmitz, P. Paetzold, Chem. Ber. **116** (1922) 2004
- (1983) 2994.
- ³²¹ P. S. Madren, A. Modinos, P. L. Timms, P. Woodward, J. Chem. Soc., Dalton Trans. 1975, 1272.

- ³³⁾ ^{33a)} S. Onaka, T. Sugawara, Y. Kuwada, H. Iwamura, J. Chem. Soc., Dalton Trans. **1982**, 257. ^{33b)} R. Bramley, B. N. Figgis, R. S. Nyholm, Trans. Faraday Soc. **58** (1962) 1893.
- 34 34a W. von Philipsborn, Pure Appl. Chem. **58** (1986) 513. 34b R. Benn, A. Rufinska, Angew. Chem. 98 (1986) 851; Angew. Chem.
- Benn, A. Rutinska, Angew. Chem. **98** (1980) 851; Angew. Chem. Int. Ed. Engl. **25** (1986) 861. $^{35_1 35_3 35_3}$ P. Galow, A. Sebald, B. Wrackmeyer, J. Organomet. Chem. **259** (1983) 253. 35b_1 H. Bönnemann, W. Brijoux, R. Brink-mann, W. Meurers, R. Mynott, W. von Philipsborn, T. Egolf, J. Organomet. Chem. **272** (1984) 231. 35c_1 H. Bönnemann, Angew. Chem. **97** (1985) 264. Angew. Chem. Jur. Ed. Engl. **24** (1985) 248.
- Chem. 97 (1985) 264; Angew. Chem. Int. Ed. Engl. 24 (1985) 248. ^{36) 36a)} R. Benn, H. Brenneke, A. Rufinska, J. Organomet. Chem. 320 (1987) 115. ^{36b)} R. Benn, A. Rufinska, Magn. Reson. Chem. 26 (1988) 895. ^{36c)} C. J. Elsevier, J. M. Ernsting, W. G. J. de Lange, J. Chem. Soc., Chem. Commun. 1989, 585. ^{37]} F. M. Ludo, D. Konnody, P. J. Shou, W. McEorlane, J. Chem.
- ³⁷⁾ E. M. Hyde, J. D. Kennedy, B. L. Shaw, W. McFarlane, J. Chem. Soc., Dalton Trans. **1977**, 1571.
- ³⁸⁾ R. Bonnaire, D. Davoust, N. Platzer, Org. Magn. Reson. 22 (1984) 80.
- ³⁹ M. Cocivera, G. Ferguson, F. J. Lalor, R. E. Lenkinski, D. J. O'Sullivan, P. Szcecinski, J. Magn. Reson. 44 (1982) 168.
 ⁴⁰ S. Zobl-Ruh, W. von Philipsborn, Helv. Chim. Acta 64 (1981)
- 2378.
- ⁴¹⁾ ^{41a)} P. S. Nielsen, R. S. Hansen, H. J. Jakobsen, J. Organomet. Chem. 114 (1976) 145. ^{41b)} T. Jenny, W. von Philipsborn, J. Kronenbitter, A. Schwenk, J. Organomet. Chem. 205 (1981) 211, und dort zitierte Literatur.
- ⁴²⁾ K. Bachmann, W. von Philipsborn, Org. Magn. Reson. 8 (1976) 648

- ⁴³⁾ Lit. ¹⁸⁾, S. 512.
 ⁴⁴⁾ 4^{4a)} B. Wrackmeyer, J. Magn. Reson. 43 (1983) 174. ^{44b)} B. Wrackmeyer, unveröffentlichte Messungen.
- ⁴⁵⁾ ^{45a)} H. Nöth, B. Wrackmeyer, J. Magn. Reson. 69 (1986) 492. -^{45b)} B. Wrackmeyer, J. Magn. Reson. 66 (1986) 172.
- ⁴⁶⁾ ^{46a} K. Seevogel, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr. ^{46b} D. Henneberg, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr. ^{46c} NMR-Kartei, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr.
- ⁴⁷⁾ Vgl. H.-D. Scharf, J. Fleischhauer, J. Aretz, Apparative Hilfs-Mitel – Allgemeines zur Ausführung photochemischer Reak-tionen, in Methoden der Organischen Chemie (Houben-Weyl-Müller), 4. Aufl., Bd. IV/5a, S. 41 ff., Thieme, Stuttgart 1975.
 G. Schomburg, A. Deege, Max-Planck-Institut für Kohlenfor-reburg Mülbin an der Pubr.
- ⁴⁹ (CH₃CN)₃Mo(CO)₃ aus Mo(CO)₆ und CH₃CN analog (CH₃CN)₃Cr(CO)₃; vgl. Lit.¹¹.
 ⁸⁰ K. Lorge Adv. Commun. Cham. 10 (1991) 07.
- ⁵⁰⁾ K. Jonas, Adv. Organomet. Chem. **19** (1981) 97.
- ⁵¹⁾ B. Bogdanović, M. Kröner, G. Wilke, Liebigs Ann. Chem. 699 (1966) 1.
- 52) R. Cramer, Inorg. Chem. 1 (1962) 722.
- 53) A. L. Ouderlinden, A. Van der Ent, Inorg. Chim. Acta 6 (1972) 420.
- 54) R. Cramer, J. Am. Chem. Soc. 86 (1964) 217; 94 (1972) 5681; vgl. Inorg. Synth. 15 (1974) 16.
- 55) R. B. King, Inorg. Chem. 2 (1963) 528.

[130/89]